
ADAPTIVE CONTROL WITH

AN EXPERT SYSTEM BASED

SUPERVISORY LEVEL

by

Gerald A. Sullivan

Rensselaer Polytechnic Institute

Mechanical Engineering, Aeronautical Engineering

and Mechanics Department

Electrical, Computer, and Systems Engineering Department

Troy, New York 12180-3590

August 1991

CIRSSE REPORT #115

CONTENTS

LIST OF TABLES

LIST OF FIGURES

ACKNOWLEDGEMENTS

ABSTRACT

I. INTRODUCTION

1.1 Literature Review

1.2 Description of Results

1.3 Structure

2. REVIEW OF ADAPTIVE CONTROL

2.1 Parameter Estimation

2.2 Adaptive Control

3. THE EXPERT SYSTEM SUPERVISED

ADAPTIVE CONTROLLER ARCHITECTURE

3.1 Overview of the Expert
Supervised Controller Architecture

3.2 Signal-to-Symbol Interface

3.3 Expert System Module

4. KNOWLEDGE ENGINEERING

4.1 Adaptive Controller Feature Variables

4.2 Overview of the Rulebase

4.3 Knowledge Engineering for
Over Parameterization Problems

5. CASE STUDIES

5.1 Modelling the Milling Process

5.2 InsufficientExcitation Case Studies

5.3 Over Pazameterization Case Studies

ii

Page

V

X

1

3

15

16

17

19

51

67

68

71

76

iii

112

118

131

139

141

145

152

5.4 Detm'ministic Disturbance
Rejection CaseStudies

5.5 Bad Initial Conditions

5.6 Conclusions

6. DISCUSSIONSAND CONCLUSIONS

LITERATURE CITED

APPENDIX

167

182

189

192

199

2O5

oo°

111

TaMe

Table

TaMe

TaMe

5.1

5.2

5.3

5.4

LIST OF TABLES

Complete Over Parameter/zation Case

Partial Over Parameter/zat/on Case

10 Newton S/nusoidal Runout Case

Bad Initial Condition Case

Page

158

164

173

187

iv

_g_e

Figure

_gure

Flg_e

_g_e

_g_e

_g_e

Figure

Figure

Figure

Figure

Figure

Figaze

Figure

Figure

Figure

2.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

5.1

5.2

5.3

5.4

5.5

5.6

LIST OF FIGURES

Schematic of an
Indirect Adaptive Controller

Flow Diagram of the Projection Algorithm

Expert Supervised
Adaptive Controller Architecture

Internal Structures
of the Expert System Module

Factbase Structure

Scratchpad Structure

Procedure Library Structure

ScheduleStructure

Interpretationofthe
Knowledge RepresentationLanguage

Example ofConcurrent
Temporal Representation

Example ofSequential
Temporal Representation

ControlledVariable/Time Area

Cutting Force ControlSystem

Force vs Time, Low ExcitationCase
with no Supervision

Force vs Time, Low ExcitationCase In-
stantaneousExpert System Supervision

Force vs Time, Low ExcitationCase, Fin-
iteCalculationTime, Expert Supervision

Force vs Time, Complete Over Parameter-
izationCase,with no Supervision

Force vs Time, Complete Over Parameter-
izationCase,InstantaneousSupervision

Page

18

39

69

78

79

82

83

86

91

95

98

107

142

149

150

151

155

156

V

Figure

Figure

Figure

Fig_e

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

Force vs Time, Complete Over Parameter-
izat/on Case, Finite Calculation Time
Supervision

Force vs Time, Partial Over Parameter-
ization Case, with no Supervision

Force vs Time, Partial Over Parameter-
ization Case, Instantaneous Supervision

Force vs Time, Partial Over Parameter-
ization Case, Finite Calculation Time
Supervision

Force vs Time, 10N Sinusoidal Runout
Case, with no Supervision

Force vs Time, 10N Sinusoidal Runout
Case, Instantaneous Supervision

Force vs Time, 10N Sinusoidal Runout
Case, Finite Calculation Time Supervision

Force vs Time, 100N Sinusoidal Runout
Case, with no Supervision

Force vs Time, 100N Sinusoidal Runout
Case, Instantaneous Supervision

Force vs Time, 10N Sinusoidal Runout with
White Noise, No Supervision

Force vs Time, 10N Sinusoidal Runout with
White Noise, Instantaneous Supervision

Force vs Time, 10N Sinusoidal Runout with
White Noise, Finite Calculation Time
Supervision

Force vs Time, Bad Initial Condition
Case. with no Supervision

Force vs Time, Bad Initial Condition
Case, Instantaneous Supervision

Force vs Time, Bad Initial Condition
Case, Finite Calculation Time Super-
v/sion

157

161

162

163

170

171

172

175

176

179

I80

182

184

185

186

vi

ACKNOWLEDGEMENT

I would like to take this opportunity to thank everyone who has helped me

throughout the entire gestation period of this work. In particular I would like to

thank my advisor, Ken Lauderbaugh for his patience and faith in my work. I would

also like to thank George Saridis for his continued support and interest, as well as

his encouragement.

I would like to acknowledge the RPI Center for Intelligent Robotic Systems

for Space Exploration, for their financial support, and the use of their facilities. In

addition, I would also like to acknowledge the financial contributions of NASA

Lewis Research Center, towards the completion of this work.

Finally, I would like to thank the guys in the "Control-Hut" for making my

research at ltPI more than just work.

vii

_o morn and clad

oo°

V=LH

ABSTRACT

Adaptive Controllers are susceptible to many commonly occurring

implementation problems, and require some form of supervision to maintain good

performance. In this thesis a two level adaptive control strategy is presented that

uses an expert system to diagnose and correct problems with an adaptive controller.

In contrast with other expert supervised adaptive control schemes, where problem

treatment is primarily event---driven, the system described here, supports an

interactive diagnosis and treatment paradigm. Basically, the interactive supervision

paradigm makes it possible for the supervisory system to change some aspect of the

adaptive controller's operation, and then base problem diagnosis on the subsequent

response of the controller. Since the supervisory system can "experiment" with the

adaptive controller, more complex diagnostics can be used, making it possible to

respond to a wider set of problems than the event-driven systems are capable of.

Topics presented in the thesis may be divided into explanations of the

supervisory system architecture, knowledge engineering, and a review of a

simulation study. In the discussions of the supervisory architecture, temporal

features are emphasized, and it is shown that all of the internal structures of the

expert system are tailored to operate in a dynamic environment. In addition,

temporal representation features of the knowledge representation language are

given, along with a review of the planning capabilities of the supervisory system.

Discussions of knowledge engineering work include the definition of the adaptive

controller problem domain, and the incorporation of diagnostic and treatment

methods into the supervisory system. It is shown that interaction with adaptive

controller environment is a necessary capability for diagnosis of certain problem

ix

conditions. Simulations of the expert supervised adaptive controller as applied to

force control for milling are presented, with results for unsupervised adaptive

controllers, supervised adaptive controllers with instantaneous response times, and a

supervised adaptive controller with a finite response time. In all cases it is shown

that the supervised versions of the adaptive controller perform much better than

unsupervised versions for a variety of cases where implementation problems axe

present.

m

°

X

CHAPTER 1

Introduction

Adaptive control is presently one of the methods available which may be

used to control plants with poorly modelled dynamics or time varying dynamics.

Although many variations of adaptive controllers exist, a common characteristic of

all adaptive control schemes, is that input/output measurements from the plant are

used to adjust a control law in an on-line fashion, [1,2]. Ideally the adjustment

mechanism of the adaptive controller is able to learn enough about the dynamics of

the plant from input/output measurements to effectively control the plant. In

practice, problems such as measurement noise, controller saturation, and incorrect

model order, to name a few, may prevent proper adjustment of the controller and

poor performance or instability result, [1,3,4,5].

In order to obtain good performance from an adaptive controller, extra

procedures and logic sometimes referred to as a "safety net", are included with the

adaptive controller to detect problems and provide some measure of corrective

action, [4,6]. In their most basic form, safety nets may be no more than a few lines

of code that adjust forgetting factors or decide whether or not to update control law

parameters, [1,4,7]. More advanced safety nets include pre-identification modes,

and control law switching functions, [4]. The main difficulty with traditional safety

nets is that the functions used to aid the adaptive controller, and the logic required

to invoke them are implemented with procedural programming techniques, [63].

Procedural programming forces the supervisory knowledge of the safety net to

conform to the flow of command execution in the program. As a result,

coordination of different algorithms of the safety net is all but impossible, and only

simple diagnostic and treatment scenarios can be handled. In addition to limited

functionality, procedurally implemented safety nets are not easy to change. Any

new procedures added to a safety net may require extensive changes in the safety

net's logic structure. Given these shortcomings, we conclude that there is a limit to

performance improvements that may be expected when procedurally implemented

safety nets are used to supervise an adaptive controller.

In this work we set out to avoid the inadequacies of procedurally

implemented safety nets, by introducing a two level control scheme in which an

expert system based "supervisor" at the upper level provides all of the safety net

functions for an adaptive controller at the lower level, [36]. The expert system is

based on a shell called IPEX, (Interactive Process EXpert), that we developed

specifically for the diagnosis and treatment of dynamic systems, [8]. Some of the

more important functions that the IPEX system provides are:

• Temporal reasoning

• Planning of diagnostic activities

• Interactive diagnosis

Also, because knowledge and control logic are separate, the incorporation of new

diagnostic and treatment knowIedge is relatively simple. We note that the

flexibility available in the system to express diagnostic and treatment knowledge,

allows much greater functionality than could ever be reasonably expected from

procedural implementations of safety nets.

The remainder of this chapter is divided into three sections. In sections 1.1

we give a detailed review of the literature in the area of supervisory systems for

adaptive controllers. In particular, we describe the evolution of safety nets from

simple ad hoc techniques, up to the use of expert systems for more advanced

supervision capabilities. In section 1.2 we summarize the results of a simulation

study we performed with the two level expert supervised adaptive controller,

applied to force control in end milling. Finally in section 1.3, we outline the

organization of the topics in the remainder of the thesis.

1.1 Literature Review

In this section, we examine the emergence of supervisory systems for

adaptive controllers and summarize the areas in which we have been able to make

contributions. The discussion that follows begins with a review of the origins of

supervisory systems, (i.e. safety nets), in section 1.1.1, and then goes on to describe

the use of expert systems as supervisors for adaptive controllers in section 1.1.2. It

is shown that present approaches to expert supervised adaptive control concentrate

on either decreasing execution time of the expert system, or on the incorporation of

_'deep knowledge" about the adaptive controller into the knowledge of the expert

system. None of the approaches surveyed have the ability to think about time as

it relates to the process of diagnosis and treatment. We conclude the discussions of

the section with a list of the features that we have included in our system to address

time issues, and allow for a more complete supervisory environment.

w

4

1.1.1The Origin# of Adaptive ControllerSupervision Systems

In the last twenty years, significantprogress has been made towards

understanding the conditions that must be maintained for stabilityof adaptive

controllers. Among the more common conditions that we have encountered for

stabilityof adaptive control schemes are:

• The input signal to the plant should be persistently
exciting [9-13]

• The order of the plant and the delay time of the
plant should be known [18,16]

• Semi-positive real conditions must be satisfied [12,14]

• The plant model must be co-prime [1,15]

• The plant should be stably invertible [16,17]

The problem with the present stage of progress, is that conditions like the ones

above, often cannot be met in practice. Implementation factors like sampling rate,

[20,22], unmodelled dynamics, [3,21], and the speed of variations in the plant

dynamics, [1,13], can all affect the stability of an adaptive controller.

In order to ensure stability conditions are met for a given adaptive control

application, extra algorithms and heuristic procedures are often included to keep the

adaptive controller well conditioned.

given as follows:

• variable forgettingfactors[7,23]

• scalingalgorithms [1,4]

• anti wind-up logic[25]

• dither signals [4,12]

A short listof some of these procedures is

5

• sampling rate readjustment [22]

• estimator reset [26]

Some of the procedures are quite simple, such as the addition of a dither signal to

the input to keep the plant dynamics persistently excited [4,12]. Other procedures

require more judgment, such as changing the sampling rate [22]. Together, these

extra algorithms and their associated logic, make up a safety net for the operation of

the adaptive controller.

It is interesting to point out that even with the obvious importance of

supervision of some form, not much was written about supervision for adaptive

controllers until the mid 80's. Although many of the algorithms developed to aid

the adaptive controller were documented, there was a lack of information as to how

to orchestrate all of the different algorithms into an effective safety net. Most

implementations of safety nets at the time appeared to be ad hoc attempts aimed at

resolving implementation specific problems.

The first signs of interest in a generic "supervisory level" for adaptive

controllers came about in 1985, with the development of a supervisory system for an

indirect adaptive controller by Isermann and Lachmann, [6]. Supervision tasks were

divided into four groups; start-up procedures, controller design, estimation, and

dosed loop supervision. During operation, the parameter estimates and eight other

statistics measured from the adaptive controller were used by the system to identify

problems in any of the four supervision areas. Once a problem was found, the

supervisory system would respond by activating the appropriate correction

algorithm at the adaptive controller level. Even though many of the procedures

used by the supervisory level in Isermann and Lachmann's system, were present in

adaptive controllers at the time, their system was the unique in that for the first

6

time supervision for an adaptive controller was performed in a systematic way.

One of the main difficulties with Isermann and Lachmann's system as well as

the ad hoc versions of safety nets in use, was that the systems were implemented

with procedural programming techniques. Procedural programming styles force the

designer of the supervisory system to merge adaptive control knowledge, best

described in a declarative fashion, with the flow control statements of the

programming language. The difficulty with mapping knowledge from its natural

declarative form into a procedural language is best illustrated with a simple

example. Consider two rules that relate the logical variables A,B,C, and D:

IF (A ISTRUE)AND(B ISTRUE)THEN(C IS TRUE)

IF (C IS TRUE) THEN (D IS TRUE)

In order to capture the meaning of these rules in a procedural programming

language like FORTI_AN, the order in which tests are run on the truth values of the

variables are crucial:

IF(A .AND. B) THEN
C- .TRUE.

ENDIF

.TRUE.
ENDIF

a similar program does not provide the same information:

IF(C) THEN
D - .TRUE.
ENDIF

IF (A .AND. B) THEN
C = .TRUE.
ENDIF

?

Due to the lack of expressiveness that procedural programming techniques imply,

supervisory systems developed in a procedural paradigm can only provide limited

diagnostic and treatment functions. Furthermore, any addition of functions to the

system at a later date could result in reprogramming major parts of the supervisory

system code. In the next section, we show how expert systems technology has been

applied to supervision of adaptive controllers as a way to avoid the inherent

problems of procedurally implemented systems.

1.1.2 Expert Supervisory Systems

During the 1980's expert system technology had progressed far enough so

that expert systems were beginning to find their way into process control

application._, [27-35]. The advantage of using expert systems in process control, as

opposed to conventional programming techniques, is that the knowledge about the

process and the programs that control "thinking" are separate. As a result, addition

of new control knowledge and functions is much easier for an expert system based

process controller, than for an equivalent procedurally implemented process

controller. One of the first applications of expert systems as a control systems

supervisor came in 1984 when Kraus and Myron implemented an expert system

called EXACT, [37], to supervise the tuning of a PID controller using pattern

matching techniques. Expert system supervised tuning of PID controllers continues

as an active research area, [38-43,55,56], but does not pose as complex a supervision

problem as the case of general adaptive control strategies.

The first mention of an expert system implementation of the "supervisory

level wt that Isermann and Lachmann introduced, came in 1985 with a system

proposed by WeUstead and Sanoff, [44], which included an off-line configuration

8

expert, and a real time control system monitor. In 1986, Astrom proposed his

version of an expert supervisory system, [45], stressing the importance of detailed

adaptive control knowledge in the system. Although neither paper describes a

working system, it is interesting to note that the emphasis Sanoff places on

execution time issues, and Astrom places on deep knowledge, seems to establish two

distinct directions that the research on expert supervised adaptive control has

moved in ever since. In the following discussions, we review existing approaches for

expert supervision of adaptive controllers, beginning with an examination of

approaches that emphasize deep knowledge, and then considering the approaches

that stress execution time issues. It will be shown that one area which has been

neglected in the present research approaches, is the ability of the expert supervision

system to "think" about time as a part of its diagnostic and treatment activities.

We conclude with a brief discussion of the features developed for our system that

allow the system to reason about time and provide an interactive style of diagnosis

and treatment which is distributed over time.

As described earlier, one of the directions that researchers have taken in the

development of supervisory systems for adaptive controllers is to include "deep

knowledge" about adaptive control in the system. Deep knowledge implies

information that is best described mathematically or by structural models, and

allows greater insights than simple heuristic knowledge, [31,54]. Many conditions

that arise in adaptive control cannot be diagnosed without some form of

mathematical analysis, (e.g. detection of deterministic disturbances). Although

deep knowledge may be costly to implement in a computational sense, the relevance

of the information obtained cannot be duplicated by simple heuristics.

9

Astrom and co-workers proposed the first expert supervisory system that

made use of deep knowledge about adaptive control for on-line monitoring of an

•adaptive controller in 1986, [45]. The proposed system contained adaptive control

knowledge divided among four knowledge sources; the main monitor, main control,

estimation, and back up control. Model order supervision, excitation supervision,

and analysis of the minimum variance controller were some of the activities which

the knowledge sources perform as part of the supervision process. In each case,

diagnostics would make use of mathematical testing procedures derived from

identification and control theory. We note that the system was to have included

some abilities to do trend analysis, but no diagnostic planning capabilities.

In 1087, Liu and Gertler implemented a supervisory system, that managed

controller detuning and identification algorithms for an adaptive controller, [48,47].

The system uses an instability detector, [48], to decide when the controller needed

to be readjusted. When instability occurs, the controller is "de-tuned w' to

reestablish stability, and the plant an identification procedure is used to find a

model of the plant that will provide good control. Once an adequate model

structure is identified, the controller is re-tuned for the new model structure. Liu

and Gertler make extensive use of results from robustness theory and identification

theory in their system, relying on heuristics only for the detection of instability.

Neat implemented an expert supervisory system in 1989 for blood pressure

control, [49]. In this scheme, the expert system chooses between a fuzzy controller,

a multiple model adaptive controller, and a model reference adaptive controller

based on operating conditions at the time. The fuzzy controller is least precise but

requires no special operating conditions. The model reference adaptive controller

provides the most precise performance, but requires the plant satisfy a "feed back

i0

positivereal" condition. The expert system monitors the controlparadigm in use at

any given time, and decides whether or not operating conditions indicate that one

of the other controllersshould be used.

Morant et al, 1989, developed an expert supervisor for adaptive control of a

waste water treatment plant, [50]. This system follows in the form of Astrom's

system, using the expert system to manage a controllersupervision process,and an

identification supervision process. Functions such as excitation maintenance,

estimator reset,wind up detection,and controllaw switching are supported by the

system. No planning capabilitiesor temporal reasoning functions are available.

The unifying characteristicof the four approaches isthat detailedknowledge

about the adaptive controllerisused as the basisof the supervisory process. In the

discussionsthat follow,we consider systems that do not make as much use of "deep

knowledge", and concentrate instead on simpler supervisory functions at high speed.

In 1985, Wellstead and Sanoff proposed a system for the supervisionof a self

tuning regulator,based on an expert system shellcalledCORTEX, (COnfiguration

Run Time EXpert), [44]. The purpose of the system was to aid a control engineer in

configuring and commissioning a self tuning regulator and then supervise the

controller after commissioning. The system was to have two main parts; a

configuration expert and a runtime expert. The configuration expert would work

interactivelywith the control engineer to choose initialsampling rates plant model

orders and delay times. The runtime expert was built to support background and

foreground tasks. During commissioning of the controller,the control engineer uses

the background processing capabilityof the system to perform model order tests,

analysis for sampling rate adjustments, etc.,as data from the plant was collected.

After commissioning the controUer, the runtime expert uses solely its foreground

11

processing capabilitiesto monitor the controller and correct problems such as

controller wind up or poor excitation of the plant. This stage of operation

represents the actual supervisory mode of the system. Note that in contrast to

Astrom's system, the supervisory mode in Sanoff and WeUstead's system provides

no detailed analysis of problems; only simple heuristicactions are in use.

Another system similar in concept to Sanoff and WeUstead's supervisory

system, was implemented by LaLonde and co-workers 1989 for the initialdesign

and subsequent supervision of a generalizedpredictive controller,[51]. In the start

up phase, the expert system picks a sampling rate, an initialmodel order, and

horizon times for the controller. During run time, the system monitors parameter

estimates and plant inputs to decide whether or not the dynamics of the plant have

changed.

When changes in the plant's dynamics are detected, the system reinitializesthe

parameter estimator and adjusts to the new set of dynamics. Again, low level

heuristicsare emphasized here for the on-line monitoring phase of operation, while

more difficultactivitieslikesample rate selectionare performed in an offlinemode.

In 1989, Lingarkar implemented a frame based supervisory system for

adaptive force control of an end millingoperation, [51]. Use of frames as opposed to

rules allowed rapid isolationof problems with the adaptive controller. The main

tasks the system isresponsiblefor are:

Reinitialization of the estimator in response to changes
in the depth of cut of the milling cutter

Rejection of parameter estimates that represent unstable
plant dynamics

Control law switching for different feedrate regimes

12

Krijgsman et al, developed an expert supervisor for an adaptive controller in

1988 that achieved guaranteed response time through the use of a technique called

progressive reasoning, [53,57]. Basically, progressive reasoning performs diagnosis

by adopting a coarse diagnosis initially, and repeatedly refining it. At any time, the

expert system has at least a partial diagnosis of problems with the adaptive

controner. As in other cases described here, the expert system uses only primitive

heuristics such as estimator reset and forgetting factor adjustment.

At this point, we have presented examples of supervisory systems with two

distinct orientations:

Systems that are applicable to slow plants and use
deep knowledge about adaptive controners; smart but slow

Systems that use only heuristic knowledge about adaptive
control but at a high speed; dumb and fast

Even in the best of both possible worlds where deep adaptive control knowledge can

be executed at a high rate, the resulting supervisory system would still be

incomplete. The problem is that none of the approaches surveyed have included any

intelligence about time itself. Without a knowledge of temporal concepts,

interactive diagnostic processes and synthesis of diagnostic plans, are not possible.

As a result, supervision processes for the adaptive controllers that appear in the

literature have been limited to relatively simple diagnostic and treatment tasks.

One of the main contributions of the work described in this thesis, is the

incorporation of temporal intelligence within the adaptive controller supervisor.

Our adaptive controller supervisory system is based on an expert system shell we

developed called IPEX, (Interactive Process EXpert), and is capable of performing

13

many time dependent diagnostic and treatment tasks, [8]. Two areas

received particular attention in the development of the IPEX shell were:

which

The development of a knowledge representation capable of
expressing temporal relationships

The development of time sensitive inferencing techniques

The knowledge representation created for the IPEX system can be used to

form rules that are a function of concurrent information, sequential information,

information that requires interaction with the world outside the expert system, or

any combination of these three types of information. Concurrent information is the

most basic type of knowledge the system uses and is illustrated in the following

simple example:

If A is a fact that is true over a time interval [tl,t2] ,

and B is a fact that is true over a time interval [t3,t4],

such that t 1 < t 3 < t 2 < t 4, then C is true over the time

interval [t3,t2]

Sequential information constructs allow rules to be written as a function of a time

sequence of information:

If A is a fact that is true over the time interval [tl,t2],

and B is a fact that is true over a time interval [t3,t4] , where

t4 > t 3 > t 2 > tl, then C is true over the interval [t3,t4]

The system achieves interactive capabilities by including the notion of "external

14

functions" in its knowledge representations. External functions are any activities

that are executed in the world outside of the expert system environment. The use

of external functions in the knowledge representation allows the system to "think"

about what must be done outside of the expert system in order to prove or disprove

a given condition:

If X is an external function and the results of running X in the

physical world show that fact A is true over time interval [tl,t2]

then some fact D is true over [tl,t2].

Notice that all three of these knowledge representation functions may be combined

in any fashion to construct powerful diagnostic and treatment rules.

The inferencing techniques we developed for this system follow directly from

the knowledge representation conventions that we created:

The system must provide truth maintenance on all sensor data,
procedure results, and conclusions that result from the infer-

encing process

In the case diagnostic sequences, the system must be able to
perform an inferencing process that evolves over time

The system must be able to plan in order to coordinate results

of procedures for concurrent diagnostics and diagnostic sequences

The preceding features of the knowledge representation and inferencing

techniques allow the system to encapsulate much of the kind of knowledge that a

human diagnostician uses when examining a problem. In the systems that appear in

the literature, most diagnostic knowledge is written in an event triggered format

with the expert system making judgments on "snap shots" of data, [44-46,49-53].

15

At best diagnostics involving time are handled by analyzing past sensor values, or

by including some form of derivatives of the sensor data. There appears to be no

ability for these systems to express knowledge about actions that the system must

take, and what order they must be taken in, to elicit behavior from the adaptive

control level that would reveal a given problem. In conclusion, the capability of our

system to capture time sensitive, interactive diagnostic knowledge, should provide

greater performance gains than the other systems described.

1.2 Description of Results

The performance of the expert supervised adaptive controller was examined

via simulations in which the expert supervised adaptive controller was used to

control and end milling process. The end milling process is a time varying, non

linear process and poses many practical problems for adaptive controllers such as

cutter runout, actuator saturation, etc. In our simulation study, four cases are

presented which illustrate various problems with the adaptive controller. In the

first case, noise processes are not included as part of the milling dynamics in the

simulation, and excitation problems develop in the adaptive controller. This

example shows how the expert supervisor handles excitation problems in the

adaptive controller when excitation problem are caused by saturation or by settling

of the output of the plant. The second case looks at the problems that

overparameter/zation of the milling model can cause, and how the system manages

them. Several instances of over parameterized models are described, covering

situations where stochastic components are present in the milling model, and where

errors in the plant model delay are made initially. In the third case, we add

16

sinusoidal runout noise to the milling model, and look at how the supervisory

system adjusts the adaptive controllerto rejectthe disturbances. In the last case,

problems caused by poor initialconditionson the parameter estimates are described

when stochastic components are present in the model used to describe the milling

process dynamics. In general, it is shown that performance of the adaptive

controller can be significantlyimproved by using the expert supervisory system,

even when the expert system's actions are delayed due to processing time.

1.3 Structure

The remainder of the thesis is given in five chapters. In chapter two, we

review adaptive control and the problems experienced in applications of adaptive

controllers, as well as, possible diagnostic methods and treatment procedures that

can be used to fix a given problem. In chapter three,we discuss the architectureof

the expert supervised adaptive controller,emphasizing communications between

levelsof the system, and the features of the IPEX shell. Knowledge engineering

issues are considered in chapter four,with a descriptionof the variables measured

from the adaptive controller and the rule classificationsused for diagnosis. In

chapter five,the resultsof a simulation study are given for the case when the expert

supervisory adaptive controllerare used to control a milling operation. Finally,in

chapter six,conclusionsand directionsforfuture work are discussed.

CHAPTER 2

Review of Adaptive Control

The most important feature of an adaptive controller is the ability of the

controller to perform online adjustments of it's feedback policy based on

measurements of the input/output data from the plant. As described in chapter

one, this adjustment capability can become ineffective depencling on the

environment that the adaptive controller is implemented in, and poor performance

results. In this chapter, we provide more detail about the operation of adaptive

controllers and their implementation problems, as the basis for discussions in

chapter four about knowledge engineering for the adaptive controller supervisory

system.

In our treatment of adaptive control operating principles and implementation

problems, we consider a subset of adaptive control strategies known as indirect

adaptive controllers. Indirect adaptive controllers have two main pieces, [1,2], a

parameter estimator and a controller design algorithm, (see Figure 2.1). During

operation, the parameter estimator iteratively calculates a model of the plant's

dynamics from the measurements of the plant input/output data. The model

estimates are then used by the control law design algorithm to update the feedback

control law coefficients. The remainder of this chapter is divided into two main

parts, parameter estimation in section 2.1, and control in section 2.2. In section 2.1

an overview of parameter estimation is given along with a comprehensive list of

problems that can effect parameter estimation algorithms. Problem detection

schemes and corrective procedures we use in the expert supervisory system to

maintain good performance of the estimation algorithms are also discussed. In

17

v

18

Parameter Estimation Algodthrn

Control Law Design Algorithm

Output, y(k)

Plant

Figure 2.1 Schematic of an Indirect Adaptive Controller

19

section 2.2, available control algorithms are presented, as well as a list of problems

associated with each type of controller. As in the case of estimator problems, we

present methods that the expert supervisory system can use to detect and

compensate for problems with the control algorithms in use.

2.1 Parameter Estimation

Depending on the form of the plant model, parameter estimation may be

carried out using any one of a number of variations of the recursive least squares

algorithm. In the work described here, we use the recursive maximum likelihood

algorithm for parameter estimation, [24,58,59], because of the possibility that

stochastic components could be present in the model of the plant. In section 2.1.1,

we present the formulation of the algorithm, and provide some insight on it's

operation. It will be shown that the algorithm has two major problem areas;

singularity problems, and high prediction error problems. In section 2.1.2, the

singularity problems experienced by the algorithm are summarized, and procedures

that the expert supervisory system uses for detecting and correcting these problems

are explained. In section 2.1.3, we look at any problem not related to singularity

that causes high error, under the heading of large prediction error problems. The

information in these sections on detection and correction of estimator problems will

be utilized in chapter four, when knowledge engineering work for the expert system

supervisory system is presented.

2O

2.1.1 The Recursive M_x_m.m Likelihood Method

The recursive maximum likelihood method was developed to estimate the

parameters of an ARMAX model in an online fashion. Given data produced by a

plant whose actual model is:

A(_l)y(k) = q-'dBCq-1)u(k) + CCq"l)_k)

where

k is the discrete time index

y(k) is the output of the plant at time k

u(k) is the input to the plant at time k

a_k) is a gaussian white noise sequence

d is the delay index of the plant

q-1 is the backwards time shift operator

and

A(q -1) = (1 + al q-1 + ana q-ha)

B(q ''1)= Cbo + bl q-1 + bnb q-rib)

cCq-'11= (I+ Clq-'l+Cncq-_c)

The recursive maximum likelihood method may be written as follows [24]:

(2.1)

8(k) = _(k-1) + P(k-1)_k-1)[y(k)- _oT(k-1)0(k-1)] (2.2)

m

21

P(k-2)-
A

where

P(k-2) _(k-1) _T(k-1)P(k-2) 1

A -I- _bT(k-l)P(k-2)_k-1) J

(2.s)

is the n x 1 parameter estimate vector at time k:

_o is the n x 1 measurement vector at time k:

[-y(k-1),...-y(k-na),u(k--d),...u(k--d-nb),

(k-1),...'(k-nc)]T

_b is the n x 1, gradient vector defined as follows:

1

_o

_(q-l)

P is the n x n covariance matrix

is the aposteriori prediction error:

_(k) - y(k) - _TCk-1)O(k)

(2.4)

(2.5)

A is a forgetting factor 0 < A _<1

From equation (2.2), we see that the new estimates of the plant parameters equal

the old estimates plus a correction term:

L(k) - P(k-1)_k-1)[y(k)- _oT(k-1)0(k-1)] (2.6)

The term in brackets represents the prediction error of the estimated model given

the new output measurement y(k). The vector _k-1), represents the negative

gradient of the prediction error in parameter space. The last factor in the correction

22

vector is P(k-1), the covariance matrix. This term can be shown to represent the

covariance of the estimated parameters [24], starting out large and becoming smaller

as uncertainty about the values of parameters decrease. Heuristically, we see that

when estimation begins, the algorithm responds to errors in the model parameters

by changing the estimates roughly in the direction of the negative prediction error

gradient. As estimation proceeds, modelling errors decrease and the covariance

matrix decreases gradually allowing parameter estimates to converge.

When the forgetting factor is set to a value of one, the covariance matrix

eventually becomes small enough so that no further changes to the plant model

parameter estimates are made regardless of how the actual plant changes. In order

to allow estimation of time varying plants, the forgetting factor may be set to a

value less than one, [60]. This has the effect of discounting older data, and keeps

the covariance from diminishing to zero. The result is that the estimation algorithm

remains sensitive to prediction errors in the estimated model, and it is possible to

track time varying plant dynamics.

Having described roughly how the RML parameter estimation algorithm

works, it is now important to point out some of the problems with the algorithm.

We categorize problems with the RML algorithm into two groups:

• Singularity Problems

• H/gh Prediction Error Problems

Singularity problems are encountered in the calculation of the covariance

matrix, P(k), when elements of the gradient vector, _(k), become linearly dependent

over time, [2,24]. This is not an uncommon occurrence and may be triggered by a

lack of excitation of the plant dynamics, [2,9,24], or over parameterization of the

23

,plant model, [61,62]. When singularity does occur, the correction term, (2.6), in the

parameter update equation increases explosively, causing massive changes to

parameter estimates, [10,23], sometimes "crashing" the estimator due to numerical

problems.

The category of high prediction error problems is meant to cover all of the

remaining problems that the estimator has which are not caused by singularity but

lead to poor modelling of the plant dynamics. Problems such as bad initial

conditions, estimation in the presence of deterministic disturbances, numerical

problems and over parameterization are all considered as members of this category.

In the following two sections we discuss each of the categories mentioned

above in detail. In section 2.1.2, singularity problems are explained, and methods to

verify the presence of a singularity problem and correct it are presented. In section

2.1.3, the problems leading to high prediction errors are reviewed, and again,

methods for dealing with the problems are given.

2.1.2 Singularity Problems

Singularity problems occur when a forgetting factor less than one is in use,

and any condition arises that leads to a linear dependence of the elements of the

_k) vector. The problem becomes more transparent if we consider that after N

iterations of the RML algorithm, the covariance matrix, P(N-1), may be written as

follows:

N

p-l(N_l) = AN p-1(_1) + _ ,_N-k _k_l)_T(k_l)

kll

(2.7)

24

If at some time k0 linear dependence occurs between the elements of t.he _k)

vector, then for all k _>ko there will exist a non-zero vector _a e [Rn, such that the

product _aT_k) is zero. From equation (2.7), it can be seen that:

_T p-l(i_l) _. _T p-l(ko_l) AN-k o (2.8)

If the forgettingfactor,A, islessthan one, as N gets large,we see that at leastone

eigenvalue of P-I(N-1) approaches zero. Conversely, as N gets large at least one

eigenvalue of the P(N-I) matrix tends towards infinity. The result is that the

sensitivityof the parameter estimation algorithm becomes very high, and parameter

estimates experience large changes called parameter bursts. Typical causes for the

linear dependence between elements of the _k) vector are insufficientexcitation,

[2,9,24],and over parameterization, [61,62,24]. In the discussionsthat follow,we

describe insufficientexcitation and over parameterization problems in detail,

showing examples of how each of these conditions lead to singularity of the P

matrix, and how these problems may be corrected.

Insufficient Ezcitation: Low excitation refers to a condition in an identification

experiment where the input signal to the plant is not rich enough in frequency

content to excite the number of modes of the plant necessary to find a unique

parameterization for the chosen model form. For example, a step input is ade-

quately exciting for the identification of a first order plant, but is not generally

sufficient for the identification of a second order plant, [1,2]. When excitation of the

plant is insufficient, there is a continuum of model parameterizations which predict

the plant output equally well, and the gradient vector, _k), no longer spans the

entire parameter space. Consider, the case where the plant model is given by:

25

y(k) - boU(k-1) + blu(k-2)

When a step input is used to excite the plant, any model that satisfies:

(2.s)

b 1 -- bo + b 1 -b o (2.9)

will produce valid predictions. Further more, the gradient vector, now points only

one direction, and the elements of the vector are linearly dependent:

= [I.]T

As described before, the result is that the p-1 matrix moves towards singularity

and parameter bursts are possible.

One of the major problems with adaptive control is that the goal of

controlling the plant is not consistent with identification of the parameters of the

plant model. When the plant reaches the setpoint, no further excitation is

generated and estimation problems can occur. In the expert supervised adaptive

controller, one of the tasks we set out to achieve was the implementation of an

excitation monitor. The functions included in the monitoring activity are to first

detect an excitation problem and then compensate for it. In the discussions that

follow, we present the methods that we developed for excitation problem detection

and compensation.

Detection of excitation problems occurs in two phases. In the first phase we

monitor the trace of the covariance matrix as an indication of possible singularity

problems. If the trace of the matrix is high or increasing, we conclude that some

form of a singularity problem such as insufficient excitation, or over

w

26

parameterization is present.In the second phase we use a teston the input signalto

see whether or not it is general enough to be used for the identificationof the

current model.

The excitation testis performed by using the plant input values to calculate

an (na + nb + 1) x (ha + nb + 1) sample autocorrelationmatrix:

n

1 _ U(k-1)uT(k-1) (2.10)R- n
k=!

where

U(k-1) --[u(k-l),u(k-2)....u(k-na-nb-1)] T

na isthe order of the A(q ''1)polynomial

nb isthe order of the B(q -1) polynomial

n isthe number of samples

If the input is persistently exciting of order na + nb + 1, then the determinant of

the sample autocorrelation matrix, R, should be bounded above zero, [1,23]. If the

determinant of the matrix is zero, then an excitation problem may be assumed.

In the actual test we use, the sample autocorrelation function is based on a

relatively small number of input measurements, (on the order of 100), and as a

result the determinant may not be exactly zero even when there is actually an

excitation problem. A threshold value "close" to zero may be used to decide

whether there are excitation problems, however, the relative magnitude of the

inputs making up the autocorrelation matrix will effect what the value of a relevant

threshold should be. To address this problem, we decide whether or not excitation

problems exist based on a "normalized determinant", where the determinant of the

27

matrix is divided by the trace of the autocorrelation matrix:

RN __det{ R } (2.11)
tr{ R }

By using the normalized determinant, we are able to compensate for some of

problems associated with a small sample size, and the threshold that is used to

discriminate between low excitation and adequate excitation cases may be chosen

independent of the magnitudes of the inputs.

It is important to note that the excitation test does not include the number

of parameters in the stochastic moving average component of the model in it's

calculations. This is due to the fact that the plant output is a combination of a

plant driven by the known input u(k), and an unknown stochastic input, a_k):

C(q-I)y(k)= q-dB(q-1)u(k)+

A(q-1) A(q-1)
-- _(k) (2.12)

Since the stochastic components of the plant will be adequately excited by the

innovations sequence, a_k), the only thing we must guarantee for good excitation of

the plant, is that the controlled input, u(k), is persistently exciting of order na +

nb+ 1.

At this point we have discussed how low excitation leads to singularity

problems, and then how to detect an excitation problem. Now we go on to present

possible solutions for excitation problems. There are basically three approaches for

dealing with excitation problems; design methods, active methods, and passive

methods.

28

Design methods provide adequate excitation to the plant as part of the

inherent function of the controller. For example, Kreisseimeier developed an

indirect adaptive control algorithm which uses the differences between the predicted

output of the plant and a filtered output, to generate a dither signal for the plant,

[64]. One of the problems with design methods for the excitation maintenance, is

that no judgment is included to warn of situations like actuator saturation. In

conclusion, we note that although design methods sound appealing for the

implementation of excitation augmentation, they cannot resolve all excitation

problems that occur.

Active methods add extra signals to the input or the setpoint of the

controller as a way to guarantee adequate excitation of the plant. The problem

with these methods is that the signals added to benefit parameter estimation have a

negative effect on controller performance. In addition, any added excitation is

useless if the control signal is saturated. The active methods we use in the expert

supervisory system are used only when saturation is low and the plant output is

stable. There are two variations of the excitation algorithm. One of these methods

adds a white noise sequence to the input signal, while the other method adds the

white noise signal to the reference input of the plant to achieve adequate excitation.

Passive methods do nothing to add any excitation to the plant but aid the

estimation process by monitoring the excitation of the plant and doing estimation

only when excitation is high enough. The passive methods that we use in the expert

supervisory system are a forgetting factor adjustment mechanism and a

regularization algorithm. When an excitation problem is detected but saturation or

poor performance prevent an active approach from being used, the expert system

can raise the forgetting factor back to one, thus preventing the covariance matrix

w-

29

from growing. In addition, we also activate a regularization algorithm which adds a

small positive definite matrix to the p-1 matrix as a method to prevent

singularities, [24]. Together, these two methods allow the expert system to place

the estimator in a kind of suspended animation, that keeps the condition of the

estimation algorithm from degrading any further.

This concludes our discussion of singularity problems due to insufficient

excitation. In the next set of discussions, we consider singularity problems due to

over parameterization of the plant models.

Over Parameterization: When the model structure chosen to describe the plant

dynamics is larger than the "true" model structure of the plant, it is easy to show

that elements of the _ vector can become linearly dependent on one another

resulting in the singularity of the p-1 matrix. For example, consider a

deterministic plant with first order dynamics that we attempt to model with second

order dynamics:

actual plant: (1 + alq-l)y(k)- q-1(b o + blq-1)u(k)

estimated

plant model:

(i+ iiq-i + 4q-2)y(k)= q'-i(b°+ blC1-1+ l_2q-2)u(k)

_k) vector:[-y(k-1),-y(k-2),u(k-l),u(k-2),u(k-3)]T

(2.i3)

(2.i4)

From equations (2.13) and (2.14),we see that the elements of the _k-l) vector are

30

linearly related for all time:

where

a T _k-l) = 0 for all k

_a- [-1., al, 0.0, bo, bl IT

and singularity problems are possible.

In order to prevent problems resulting from singularity, like parameter

bursts, the expert supervisory system must be able to analyze the estimation process

for signs of over paramete_ization and then change the model structure if over

parametedzation is detected. In the following sections, we describe the method we

use to detect over parameterized models, and then go on to explain how we adjust

the model structure to remove over parameterization.

One of the constraints on our choice of over parameterization detection

algorithms, is that we want to run only one model estimation process at a time in

order to minimize the number of calculations necessary. Many of the methods

available for model order identification, (e.g. determinant ratio test [61,62,65],

F-test [62], equation error test [65]), require parallel model estimations to be

carried out. Other tests used for model identification show how to detect a possible

under parameterized plant model, (e.g. whiteness tests), but do nothing to show

when a model is over parameterized, [62]. The method we adapted for use in the

expert supervisory system is based on an analysis of the roots of the polynomials

that make up the model, [65]. The root test checks to see whether or not there is a

set of roots common to all three terms of the plant model. If common roots are

31

found, and they lie within the unit drde, then the plant is over parameterized and

canbe shortened.

Detection of over parameterizationmay be divided into two phases,detection

of a singularity in the p-1 matrix, and analysis of the roots of the model. In the

first phase, we simply look for signs that a singularity problem is emerging. As in

the case of excitation problem detection, we perform this first phase of diagnosis by

monitoring the trace of the covariance matrix, P, and it's rate of change over time.

If the covariance or it's rate of change is high, we examine the possibility of over

parameterization using the root test.

The root test is started by calculating the roots of all of the the terms of the

estimated plant model. The roots which most closely match each other amongst the

three model terms are then identified. If the average distance of these roots in the

z-plane is less than a small threshold, we consider the roots equal and factor them

out of each model term. The search is then repeated looking for the next set of

closest roots in the remaining model terms. When the average distance between the

closest roots is larger than the threshold, the search for additional common roots is

stopped.

After removing what we believe to be common roots from the plant model

and lowering the model order accordingly, the next step is to verify that the

factored form of the model is adequate. Verification is necessary since it is possible

that factoring roots out of the model which we consider to be "dose" to equal, may

result in the removal of roots that actually represent part of the dynamics of the

plant. The method we use to test the relevance of any given model structure change

is based on the Akaike information criterion and is divided into two stages. In the

first stage, the RML algorithm is reinitialized with the new model structure and the

32

parametersof the new model are re-tuned. In the second stage of the verification

process, the Akaike information criterion, [66]:

N Log 2 % 2(number of parameters) (2.1s)

where N - the number of samples the statisticisbased on

2_ the prediction error variance

is calculated for the new model structure and the original model structure, under the

same operating conditions. If the new model structure is an adequate representation

of the plant dynamics, then the Akaike indices will be less than the Akaike index of

the original model. In this case we conclude that over parameterization was the

cause of singularity problems and we adopt the shortened model as the current best

version of the plant model. If the Akaike index of the shortened model is higher

than that of the original model, we conclude that an error was made in our analysis

of the model estimates, and retain the original model as our current best model.

In our discussion of singularity problems we have showed why singularity of

the p-1 matrix can occur, and how insufficient excitation as well as

overparameterization can cause the condition. We have also shown how to detect

and treat insufficient excitation and over parameterization problems. In the next

section, 2.1.3, we talk about problems with the RML algorithm which are not

related to singularity, and then describe detection and correction techniques for

these problems.

33

2.1.3 Large Modelling Errors

In addition to the phenomenon of parameter bursts caused by the emergence

of a singular p-1 matrix, other problems exist which prevent the parameter

estimation algorithm from providing good model estimates. In this section, we

consider five instances of problems that can be shown to cause large modelling errors

in the RML algorithms:

• Deterministic Disturbances

• Bad Initial Conditions

• Over Parameterization

• Plant Changes

• Numerical Problems

In each case, we show how a particular condition affects the quality of the estimates

obtained, as well as how to respond to that condition to improve model estimates.

Of particular interest in this section is our modification of the basic RML algorithm

to allow good estimates in the presence of deterministic disturbances.

Deterministic Disturbances: One of the situations that can cause large modelling

errors is the presence of deterministic disturbances in the dynamics of the plant,

[1,24]. When deterministic disturbances are left unmodelled, parameter estimates

will be biased and may be unsuitable for control applications, [21]. If bias problems

are avoided by modelling the disturbances as part of the dynamics of the plant, then

problems such as the stability of the predictor form of the model, and large

convergence times for the higher dimension model must be considered. In this

34

sectionwe describeproblemswith the RML estimation algorithm whenit is usedto

estimate the parameters of a model that indudes deterministic disturbances. We

begin with an explanation of how deterministic disturbances may be included in the

plant model. Once we have established the form of the model used, we point out

the susceptibility of this model to high prediction errors. It is shown that the

prediction errors associated with the model form may be decreased if a "projection

algorithm" is used with the RML estimation algorithm. Following our discussion of

prediction error problems for models that include deterministic disturbances, we

address problems due to the high number of parameters that must be estimated

when deterministic disturbances are included in the model. Modifications to the

RML algorithm are presented that allow the number of parameters estimated to be

lowered once the deterministic disturbances have been characterized. We conclude

this section with an explanation of the methods used by the expert supervisory

system to isolate the disturbance model required by the modified version of the

RML algorithm.

A deterministic disturbance may be described as the output of a marginally

stable system driven solely by initial conditions:

where

d(k)= --
D(q-I)

d(k) is the deterministic disturbance with d(k) = 0
fork < 0

E(q -I) = (eo + elq-'l....+ eneq-ne)

D(q -I) = (1 +dl q-1 dnd q-nd)

35

Ko)= 1.o

6(k)= 0.ofork$0

When deterministic disturbances are present in the input or output measurements of

the plant, they can be included in the model of the plant dynamics as follows:

A(q-1)y(k) = q-d B(q-1)u(k) + C(q-1)a_k) %

Z(q-1)

D(q -'1)

_(k)

(2.17)

Multiplying both sides of equation (2.17) by D(q -I) and neglecting terms due to

initialconditions, (i.e.E(q-1)6(k)), we can reformulate the model as a standard

ARMAX model:

A(q-1)D(q-1)y(k) = q---dB(q---1)D(q-1)u(k) + C(q-1)D(q-1)_k)

(2.1s)

In the discussions that follow we review problems with the predictor form of this

model and show that modifications must be made to the RML algorithm to avoid

high prediction errors.

When the model given in equation (2.18) is used to predict the output of the

plant, based on only past input and output data, we see that the prediction errors

will be large due to a lack of information on the initial conditions of the

disturbances. The prediction form of the model given by equation (2.18)simplifies

to:

u

36

A(q "-1)[

_.(k)= !i
[c(C 1)

u(k) (2.19)

and the predictionerror isbased on equations (2.17),and (2.19)is:

y(k)- y(k)= w(k) + (2.2o)

Thus, without knowledge of the initial conditions on the deterministic disturbance,

the marginally stable dynamics of the disturbance will prevent the predictor,

(equation 2.19), from providing accurate estimates of the plant output, [24].

Another approach that allows incorporation of deterministic disturbances in

the plant model is to use an approximate model of the plant whose predictor form is

insensitive to initial conditions on the disturbances, [1,24]. In this approach the

model takes on the form:

-1 * -1
A(q-1)D(q-1)y(k) _ q---dB(q---l)D(q-1)u(k) % C(q)D (q)

(2.21)

Where D*(q -1) is the polynomial whose roots are the projectionsof the roots of

D(q -I) into the unit circle:

nd

D*(q -I) - II (I- _riq'l) with 0 < _ < 1. (2.22)
i-1

m

37

where ri are the root locations of D(q--1):

nd

D(q ''1) = II (1. - riq-1) (2.23)
i=l

When this model is used to describe the plant dynamics, the predictor form of the

model is given by:

=
A(q-l)D(q -I)

* -i
C(q-1)D (q)

y(k) + q---d B(q-l)D(q-l)

--i * -i
C(q)D (q)

u(k)

(2.24)

Since D*(q -1) is stable and not equal to D(q--1),--- the effect of the deterministic

disturbance on the prediction dies out over time, and the prediction error

approaches:

y(k) - y(k) = D(q-1) _k) (2.25)

D*(q -1)

At this point, we have discussed prediction error problems for models that

include deterministic disturbances, and presented an alternate modelling approach

that avoids these problems. We now turn towards the problems posed by the

presence of deterministic disturbances in the process of parameter estimation.

When the RML algorithm is used to estimate the parameters of a model that

contains deterministic disturbances, there is no apriori knowledge of D(q-1). The

38

predictor used by the estimation algorithm to calculate the parameter correction

vector, (equation 2.6), changes with time and is given by:

~ 1 ~ 1
A(q'- _kwl) B(q- _kml)

y(k) - y(k) -- y(k) _q--d u(k)
~ 1

C(q-l,k-1) C(q- ,k-l)

where

,_(q'-l,k-1) is the estimate of the polynomial

A(q-1)D(q -1) available at time k-1

B(q-'l,k-1) is the estimate of the polynomial

B(q--1)D(q -1) available at time k-1

is the estimate of the polynomial

C(q-1)D(q -1) available at time k-1

(2.26)

~ 1
As the parameter estimates move closer to the true parameter values, the C(q-)

polynomial may develop roots on the unit circle due to the presence of deterministic

disturbances. When this happens, prediction errors no longer decay with time, and

the estimated model may be useless for prediction or control applications.

To avoid large modelling errors due to a marginally stable predictor form, we

use a "projection algorithm", [24], suggested by Ljung, (see Figure 2.2). The

projection algorithm uses the Schur-Cohn method to establish whether or not the

roots of the _(q-1) polynomial lie on or outside the unit circle. If there are roots

on or outside the unit circle, the projection algorithm multiplies the parameter

- 39

Initialize Variables:

cnt = 1.

proj- 1.

yes
Projection algorithm
saturated, retain last
estimate:

e (k+l) = k)

Calculate a trial parameter vector:

(k+l) = 0(k) + proj.L(k)

cnt = cnt + 1

proj =projo_
where

0<i.t< 1.

yes
m,,..._

@(k+l) = @ 0c+i)

Figure 2.2 Flow Diagram of the Projection Algorithm

40

correction vector, equation (2.6), by a projection vector less than one, and then

recalculates the parameter estimates. The estimates are then checked again to

make sure that the resulting predictor form of the estimated model is stable. If the

predictor form is still not stable, additional projections can be made up to a limit of

ten. At this point, no further projections are made and the parameters of the model

revert back to their values at the last iteration of the RML algorithm. The result of

using the projection algorithm is similar to the effect we achieved by introducing the

approximate model, equation 2.23, when the characteristic equation of the

deterministic disturbance was known. Since the predictor form of the estimated

model remains stable, prediction errors decay with time, and we are able to

maintain good performance from the RML estimation algorithm.

In addition to prediction error problems caused by modelling deterministic

disturbances, there are several other problems that occur which are related to the

potentially large number of parameters in the model:

• Slow convergence

• Susceptibility to excitation problems

• Numerical problems

In the discussions that follow it is shown that the number of parameters actually

estimated may be reduced as the expert supervisory system learns what

deterministic disturbances are present. We begin with a description of the

modifications to the RML algorithm that allow the algorithm to filter off the effects

of deterministic disturbances once a model of the disturbance is known. Next, we go

on to show the methods that the expert supervisor uses to identify deterministic

disturbances from the estimated model of the plant.

- 41

When the characteristic equation of a deterministic disturbance, (i.e. D(q -1)

is known, the RML algorithm may be reformulated so that fewer parameters must

be estimated. Given that the system is described by the model in eqn. (2.17):

A(q-1)y(k)= q-dB(q-_)u(k)+ C(q-_)_(k)+ 6(k)

and the D(q -1) polynomial is known, the estimation algorithm may be recast in the

following form:

8(k)- 8(k-l) + P(k-1)_k-1)[y'(k)- _T(k-1)0(k-1)- _(k-1)0 d]

_[P(k--2) _b(k-l) cT(k-1)P(k-2)]
P(k-1)= 1 P(k-2)-

_ + CT(k-1)P(k-2)¢(k-1)

where y'(k) = D(q-1)y(k)

u'(k) = D(q-1)u(k)

* 1
e'(k)- D (q-)e(k)

D*(q -1) = 1 + d 1 q-1 + d2 (2 d:dq-nd

_(k)=y'(k)- _(k-ll?(k-l) - _(k-l)0 d

A A M _ _ A T

= (al,...ana,bo,...bnb,Cl,...Cnc)

(2.2z)

(2.2s)

42

and

_oT(k-1) -- (-y'(k-1)...-y'(k-na),u'(k--d)...u'(k-nb-<i),
e'(k-l)...e'(k-nc))

* *)T0d - (d 1, d d

@T(k-1) - (e(k-l), e(k-nd))

_8 C(q-l)D*(q-1)

(2.29)

The modifications have the advantage that once a disturbance is identified by the

expert supervisory system, 3xnd parameters can be eliminated from the estimation

problem. For a simple sinusoidal disturbance this means a savings of six

parameters. As a result, the transient response of the algorithm to changes in the

plant dynamics may be improved as well as the susceptibility of the estimator to

excitation problems and round off errors.

Having described the modifications to the RML algorithm, we now review

the methods used by the expert system supervisor to characterize the deterministic

disturbances. The characterization process may be divided into two phases; model

analysis and verification.

Model analysis occurs any time the supervisor looks at the possibility of

common roots among the terms of the model. For example over parameterization

checks and trouble shooting of pole placement controllers involves examination of

the roots of the estimated model. If any roots are found that lie close to the unit

circle and are common to all three terms of the plant model, the supervisor

hypothesizes that these roots make up the characteristic equation of a deterministic

disturbance.

43

Once the system has detected these roots, they are combined to make the

filter polynomial D(q -1) used by the modified RML algorithm described above.

The expert supervisory system reinitializes the estimation algorithm using the

factored plant model. When the model parameters converge, an Akaike test is

performed as in the case of over parameterization checks, and the model with the

lowest Akaike number is chosen as the current best model of the plant.

In the previous section we have discussed problems associated with

estimation when deterministic disturbances are present. It was shown that two

groups of problems can occur when deterministic disturbances are modelled:

• High prediction error due to marginally stable
predictor forms

• Problems associated estimating a large number
of parameters

For the case of high prediction errors caused by a marginally stable predictor, we

showed that a projection algorithm could be used to maintain good performance of

the estimation algorithm. In addition modifications to the I_ML algorithm coupled

with disturbance characterization functions in the expert supervisory system, were

presented as a way to lower the number of parameters that we actually have to

estimate. In the next section, we consider the problems caused by poor choices of

initial conditions on the parameter estimates, and describe how the expert

supervisor may be used to select new initial conditions if necessary.

Bad Initial Conditions: One of the problems with the estimation of models

containing stochastic components, is that the estimation process becomes a non

linear optimization problem, and is sensitive to the values of initial conditions,

[1,24]. With no apriori information, it is easy to pick initial values for parameter

44

estimates that generateparameter trajectories that try to leave the region of stable

parameterizations, or become trapped in local minima. The expert supervisory

system is equipped to recognize when a bad choice of initial conditions has been

made and can reinitialize the estimator with a new set of initial conditions if

necessary. In the following discussions the problems caused by a bad choice of

initial conditions are described. Detection and treatment procedures used by the

expert system are reviewed, and areas for future work are noted.

The RML algorithm as well as many other estimation algorithms, conducts

an iterative search through the parameter space of a given model structure to find a

parameterization that the minimizes the expectation of the square of the model

prediction error based on past input/output measurements from the plant being

identified. In the case where the model form is purely deterministic, the

minimization problem is linear in the parameters of the model. If however, the

model has stochastic components, the minimization of the expectation of the

squared modelling error is a non linear optimization problem. Consider the

following example of a first order stochastic system:

y(k)= (I+ clq-1) (k) (2.30)

In this case, the prediction error of the model is given by:

e(k)-- y(k)- y(k)- y(k)

(1 + Clq'-l)

(2.31)

45

and the expectation of the squared prediction error is:

W

- Z{(i__ZO(--cl)i2} (2.32)

The expectation of the squared prediction error, eqn. (2.32), is a not a

quadratic function of the c 1 parameter, which means that the estimation algorithm

must perform a minimization process that is nonlinear in the c 1 parameter. As a

result, choice of initial conditions can have a large effect on the behavior of the

parameter estimates. In the simple stochastic model described above, a bad choice

of initial conditions may generate parameter trajectories that try to leave the region

of stable predictor forms. In more general ARMAX models, we have the added

problem that parameter estimates settle into local minima, [24]. In the present

form of the expert supervisory system, methods have been included to detect when

bad initial conditions have been used in some cases, as well as procedures to pick

initial conditions and restart the estimation algorithm.

Detection of initial condition induced problems takes place in two stages. In

the first stage, the system looks for model prediction errors that are high and

increasing. When these conditions are observed, the expert system examines the

possibility that initial conditions on the estimator were not properly chosen. At this

point, the expert system is capable of concluding bad initial conditions when the

estimates try to leave the region of parameterizations with stable predictors. Our

approach is to monitor the projection algorithm and keep track of how frequently

estimates are not updated due to stability constraints on the parameters. If the

projection algorithm is "saturated", (i.e. cannot update parameter estimates), more

than 30 percent of the time within a finite data collection window, we conclude that

r_

46

the initial conditions on the estimates were bad and select a new set of parameters

for the stochastic terms of the model. Once the new parameters are calculated, the

estimation algorithm is reinitialized. There is no guarantee that the new initial

conditions will result in better estimator performance. In experiments we have run

however, the relnitialization technique has been effective.

It is important to note that the supervisory system does not yet include a

method to detect local minima that fall within the region of stable predictors.

When initial conditions are such that the estimates are drawn into a local minima,

the magnitude of the prediction error may be unacceptable even though parameters

appear to have converged. One method suggested by Ljung involves measuring the

"whiteness" of model prediction errors with an auto correlation test. If the

predictions are not white, the convergence point of the parameters can be assumed

to be a local minima and the estimator can be reinitialized with different starting

values for the parameters.

Over parameterization: In section 2.1.2, we showed that when all of the terms of the

model used to describe the dynamics of the plant are over parametefized, it is

possible for the p-1 matrix to become singular and cause parameter burst

phenomenon. In this section, we consider the problems caused by over

parametefization of a subset of the model polynomials. When a subset of the model

polynomials in the plant model are over parameterized, singularity problems will

not occur, (assuming adequate excitation of the plant). However, because extra

parameters must be estimated, the transient behavior of the algorithm can be

affected, and uncertainty of the parameters will be higher than if the correct model

orders were known. In the discussions that follow, we review the methods that the

u

47

expert supervisory system uses to detect partial over parameterization as well as the

process by which the supervisor corrects the order of the model. We begin, showing

how partial over parameterization manifests itself in the parameter estimates of the

model, and then go on to describe how the system decides what model orders to

change. In the last part of the discussion, we show how the expert supervisory

system validates a new model, once model order modifications have been made.

In the case where all terms in the plant model are over parameterized, it can

be shown that many parametefizations are possible which adequately describe the

plant. When a subset of the polynomials in the plant model are over parameterized,

we see that only a single parameterization will correctly describe the plant. For

example, consider the following first order system:

(I + al q-1)y(k) - q---d(b° + blq-1)u(k) (2.33)

If we over parameterize the B(q -1) polynomial:

* * -1 * -2
(1 + alq-1)y(k) = q-d (b° + bl q + b2q)u(k) (2.34)

As long as the input u(k) is sufficientlyexciting,then there isonly one solutionfor

,

the bi parameters:

bo = bo bI - bI b2 = 0

A consequence of the fact that only one valid parameterization exists, is that the

vector of parameter estimates of an over parametefized model will contain zeros.

48

Two cases are possible:

Trailing zeros for over parameterization of

A(q-1), B(q-1), or C(q -1) polynomials

B -1Leading zeros for the case where the (q)
polynomial is over parameterized and the delay
is under estimated

In order to test for these conditions, the expert supervisory system must wait

until the trace of the covariance of the P matrix falls below a certain threshold,

indicating that confidence in the values of the parameters is high. At this point, the

expert supervisory system looks at each of the estimated polynomials of the model,

comparing the value of the parameter with a threshold used to determine what

parameters will be considered to have a value of zero. For identification of trailing

zeros, the system starts with the last parameter in each model polynomial and

decides whether or not that parameter is zero. If it is zero, the order of the

polynomial is decremented and the supervisor looks at the next parameter in the

estimated polynomial. If the parameter is not small enough to be considered as a

zero, the order of the polynomial is unchanged and the supervisor stops the search

through the parameters of that particular model polynomial.

Similarly, for leading zeros in the B(q -1) polynomial, the supervisor starts at

the b o parameter, checks to see if it can be considered to be zero, and decrements

the order of the B(q -1) polynomial if so. In addition, the supervisory system

increments the value of the delay if the b o parameter is zero. As in the detection of

trailing zeros, if any parameter examined in the search for leading zeros is too large

to be replaced by a zero, the search stops and the model order remains the same.

B

49

After the expert supervisory system makes any changes to the model orders

or the delay, it must make sure that the changes are indeed valid. As in other cases

we have described, (over parameterization, deterministic disturbance detection),

validation takes place by re-tuning the parameters of the new model, and then

running an Akaike test to see whether the lower order model adequately describes

the dynamics of the plant. If any errors are made, and parameters are removed that

are actually important, the Akaike test will detect them, and the original model will

be reinstalled.

Plant Chanqes: When the dynamics of the plant are time varying it is possible that

parameter estimates which accurately describe the plant behavior during one time

period produce poor predictions at a subsequent time. We recognize two

classifications of the dynamics of the plant; gradually changing, and rapidly

changing dynamics. In the case of gradually changing dynamics, modelling errors

can be reduced by adjusting the value of the forgetting factor. Plants that

experience rapid changes in their dynamics, may require reinitiafization of the

estimation algorithm, some times referred to as covariance resetting, in order to

improve the over all prediction characteristics of the parameter estimates.

Basically, detection of plant changes is accomplished by monitoring the prediction

error variance and the trace of the covariance matrix. When the prediction error

variance is increasing, but the covariance indicates a high amount of confidence in

the parameter estimates, a change in the plant dynamics is assumed. The decision

to reinitialize the estimation algorithm as opposed to simply lowering the forgetting

factor is made based on the magnitude of the increases in the prediction error

variance. Large changes in the prediction error variance correspond to the case

5O

where a step change in the dynamics occurs, and reinitialization is the appropriate

response. For smaller increases in the prediction error variance, adaptation to

changing plant dynamics is achieved by lowering the forgetting factor.

Numerical Problems: The last problem area addressed under the heading of "large

prediction error" problems is the presence of numerical problems. In cases where

the model form estimated is of low order, round off errors have little effect on the

RML estimation algorithm. As the number of estimated parameters increases,

numerical problems become more serious and can effect the value of the estimates.

Although there is no way to completely eliminate inaccuracies caused by finite word

size calculations, we can improve the condition of the estimation algorithms so that

numerical effects are minimized. Two of the methods that we have used are

Biexmans U-D factorization algorithm and a simple scaling algorithm.

The U-D factorization exploits the symmetry properties of the covariance

matrix P, to lower the number of calculations required to update the estimation

gains and preserve the positive definite property of the covariance matrix regardless

of the order of the model, [68]. The scaling algorithm simply scales the

measurement vector, _o, so that the covariance matrix has entries that are

approximately of the same order of magnitude, [1]. This ensures that any numerical

errors that occur in the calculation of the parameter correction vector, eqn. (2.6),

will have the same relative importance over all of the parameters. In our work with

parameter estimation, scaling also appeared to improve the transient response of an

estimation algorithm in any case where large differences in the magnitudes of the

elements of the measurement vector existed. In summary, numerical problems are

phenomena that must be assumed to be present when large models are estimated

51

from the data. Numerical problems cannot be canceled completely, but by proper

conditioning of the estimation algorithm, numerical effects may be greatly reduced.

At this point, we have reviewed the operation of the RML estimation

algorithm, as well as problems with the algorithm and possible recovery strategies.

Problem areas were divided into two categories; singularity problems and large

modelling error problems. In each case, we gave a detailed description of the

problems and showed how the expert supervisor detects and treats a given problem

condition. In the next section, 2.2, we provide a review of the control algorithms in

use by the expert supervised adaptive controller. As in section 2.1, problems with

the controllers are given, and detection and treatment schemes for the expert

supervisor are summarized.

2.2 Adaptive Control

In the following discussions we describe the control law paradigms that are

available in the expert supervised adaptive controller environment. The expert

supervised adaptive controller makes use of four different control laws:

• Pole placement controller

• Internal model principle controller

• D--step ahead controller

• Model reference controller

As will be shown, each of these controllers have properties that provide good control

in one situation and poor control in another. With four control paradigms available,

52

it is possible to avoid some control difficulties by switching to an alternate control

scheme. We begin the discussions in section 2.2.1 with an explanation of the pole

placement controller, showing how the design procedure works and the conditions

that must be maintained for proper operation. Analogous explanations are then

provided for the internal model principle style controller, the d-step ahead

controller, and the model reference controller. After our descriptions of how the

various control paradigms work, we examine problems that affect these control

strategies in section 2.2.2 :

• plant/controUer incompatibilities

• Controller wind-up problems

• Poor knowledge of the plant dynamics

In each case, methods for detecting problems are given ,in addition to procedures for

correcting the problems which occur.

2.2.1 Controller Design

In this section, control algorithm design methods are reviewed for pole

placement control, internal model principle style control, d-step ahead control, and

model reference control. The main purpose of the section is to define the constraints

that must be satisfied when using any of the four control algorithms mentioned

above. We begin with a description of the pole placement controller, showing how

the control law is motivated, as well as the restrictions on the characteristics of the

plant which must be observed in order to use the pole placement algorithm. In

particular, it is shown that the plant must be coprime, (i.e. no common factors in

m

53

the A(q -1) and B(q -1) polynomials). Internal model principle control algorithms

are considered next, and it is shown that the co-prime condition required for a

standard pole placement controller can be relaxed. This is of practical importance,

since the controller is not affected by the presence of model terms due to

deterministic disturbances, and can provide disturbance rejection capabilities. We

conclude the section with discussions of two minimum variance style control laws;

the d--step ahead controller, and the model reference controller. Although, no

co--primness assumptions are necesarry, it will be shown that the minimum variance

controllers require that the underlying plant is minimum phase, (i.e. stably

invertible).

Pole placement control: The principle behind pole placement controllers is to pick a

feedback structure that assigns the closed loop poles of the plant to some set of

desired pole locations [1,15]. When the dynamics of the plant are described by an

AR.MAX model:

A(q-1)y(k) = q--d B(q--1)u(k) + C(q-1)w(k)

and the feedback law is in the form of a servo control law:

F(q-1)u(k) = H(q-1)r(k) - G(q-1)y(k)

where:

F(q-1) = (1+ flq-1 +

H(q "-1) -- (h ° + hlq-1 +...hnh q-'nh)

(2.34)

(2.3s)

54

G(q-1) - (go + glq-1 +'"gng q-'ng)

r(k)isthe referenceinput sequence

u(k) isthe input to the plant

y(k) isthe plant output

the closedloop response isgiven by the followingdifferenceequation:

q---dB(q-1)H(q-1)r(k) + F(q-1)C(q-1)a_k)

y(k) = (2.36)

F(q-1)A(q-1) + q-d B(q-1)G(q-1)

In a pole placement controller, the choices of the polynomials, F(q -1) and

G(q-1), are made such that the poles of the closed loop system match the roots of

S(q-'l); a polynomial containing the desired pole locations.

F(q-l)A(q-l) + q-d B(q-1)G(q-l) = S(q-l) (2.37)

Solution of eqn. (2.37)requiresthat severalconditions are maintained:

• The A(q -I) and B(q "-I)polynomials are coprime;

i.e.,no common factors

• nf+ng+l > ns; the number of unknowns in eqn. 2.37

isgreaterthan or equal to the number of equations

Assuming that the A(q -'I)and B(q -I) polynomials are coprime, the followingset of

choices for the controllerdesign,make eqn.(2.37)solvable:

55

nf=nb+d-1

ng = na - 1

S(q-1) = C(q-1)T(q -1)

where T(q -1) is a polynomial containing desired pole locations

and nt ischosen such that nt < na + nb + d -1 -nc

In thiscase there are (ha +nb + d - I) equations in (na + nb + d - I) unknowns,

and the F(q -1) and G(q -I) polynomials may be uniquely determined.

With the set of design choices given above, the closed loop response of the

plant may be written as:

q--dB(q-1)H(q-1) F(q-1)
y(k)= r(k)+ _ _(k) (2.3S)

C(q-l)T(q-I) T(q-I)

IfH(q -I) ischosen as C(q-I)T(1)/B(1), the the closedloop response willbe:

y(k) - q-d B(q-1)T(1)

B(1)T(q -1)

F(q -1)

r(k) + w(k) (2.39)

T(q -1)

In other words, we see that the closed loop response tracks the output of a system

with the poles we chose, with a deviation induced by the stochastic components of

the plant.

Internal model principle control: As shown above, a requirement for the solvability

of the diophantine equation, (2.37), is that there are no common roots between the

A(q -1) polynomial and the B(q -1) polynomial. If deterministic disturbances are

56

modelled as part of the plant's dynamics, then common roots will occur between the

A(q -1) and B(q -1) polynomials of the model, [1], and the standard pole placement

assignment equations become singular. In this section, we describe a modification of

the pole placement design technique that avoids singularity problems and provides

disturbance rejection capabilities, if the characteristic equation of the disturbance is

known. The method is called the internal model principle, and in the following

discussions we describe the design procedure as well as the disturbance rejection

qualities of the controllers designed with the internal model principle. As shown in

section 2.1.3, the model describing the dynamics of the plant with deterministic

disturbances may be written as:

A(q-1)y(k) _ q-d B(q-1)u(k) + C(q--1)w(k) +

Z(q-1)

D(q -1)

6(k)

Ifthe characteristicpolynomial of the disturbance isknown, (i.e.D(q -1) isknown),

the internal model principle may be used, and the feed back policy is given as

follows:

F,(q-1)D(q"l)u(k) = -G(q-1)y(k) + H(q-1)r(k)

where F'(q-1) = 1 + flq-1 + ...f_t -nil

D(q -1) = 1 +dl q-1 + ...dnd q-nd

G(q-1) = go + glq-1 + ""gngq'-ng

_(q--1)= ho+ hlq--1+ ...hnhq--nh

(2.40)

- 57

and mP=nb+d-i

ng =na+nd-I

The closed loop response of the plant with the internal model principle style control

law becomes:

y(k)=
q-d B(q-1)H(q-1)r(k) + F'(q-1)D(q'-l)c(q-1)w(k)

F,(q-1)[A(q-1)D(q-1)] + q-d B(q-1)G(q-1)

+

F,(q -I)A(q-I)E (q-l) 6(k)

F,(q-I)[A(q-1)D(q-l)] + q-d B(q-1)G(q-1)

(2.41)

As in the case of pole placement design, we pick F'(q-'I) and G(q -I) polynomials

such that the closed loop characteristicequation has a set of desired pole locations

given by the polynomial T(q-1):

F'(q-1)[A(q-1)D(q-1)] + q-dG(q-1)B(q-1) = C(q-l)T(q -1)

(2.42)

where T(q -1) is the set of desired pole locations that
satisfies the order constraint:

na % nb % nd % d- 1 _>nc % nt

Notice that the cliophantine equation given by equation 2.42 will be solvable

since no common roots are present between the polynomials [A(q-1)D(q-1)], and

58

B(q-1). As a result, there do exist F'(q"-1) and G(q -'1) polynomials that satisfy the

diophantine equation, and the closed loop response of the plant is:

q---dB(q-1)H(q-1) F,(q--1)D(q-1)
y(k)= r(k)+ _(k)

T(q-1)C(q-1) T(q-1)

F,(q-1)A(q-1)E(q-1)
+ 6(k) (2.43)

T(q-l)c(q-I)

Since the polynomial T(q'-l)c(q --1) is stable, we see that the component of the

output due to the deterministic disturbances dies out over time. Further more, if

we pick H(q "-1) to adjust the steady state performance:

C(q-1)T(1)
H(q-1)= (2.44)

B(_)

Then steady state output of the plant is given by:

y(k) = q'-dr(k)+

F,(q--l)D(q -I)

T(q -I)

_(k) (2.45)

D-step ahead control: A d---step ahead controller is an example of a minimum

variance control law, [1]. The d-step ahead controller is also known as a pole-zero

cancellation style controller since it uses a feedback structure that cancels the

open-loop zeros of the plant with dosed loop poles. The control law used by the

59

d-step ahead controller is given by:

F,(q-1)B(q-1)u(k) -- ...G(q-1)y(k)+ H(q-1)r(k) (2.46)

where ni _ = d- 1

ng - na - 1

In dosed loop, the output of the plant under d-step ahead control may be written

RS:

y(k) =

q-dB(q-l)H(q-1)r(k) + C(q"l)F'(q-1)B(q-1)_k)

F,(q-1)B(q-1)A(q---1) + q-d B(q-1)G(q-1)

(2.47)

IfF'(q"-I)and G(q -I) are chosen such that:

F,(q-1)A(q-1) + q---dG(q-1)= C(q-1) (2.48)

and H(q -1) is set equal to C(q-1), then the closed loop response becomes:

y(k) = q---dr(k) + F'(q-1)a_k) (2.49)

and the output follows the reference input, r(k), within a deviation determined by

F'(q -1) and the stochastic disturbance _k). Notice that in the case of a d-step

ahead control, common roots in the A(q -1) and B(q -1) polynomials are not a

problem since the diophantine equation includes only A(q-1). The draw back with

6O

this arrangement is that in order to cancel B(q -1) from both the denominator and

the numerator of the closed loop response equation, the B(q "-1) must be stable. In

other words, the d--step ahead control algorithm is only applicable to minimum

phase plants.

Model reference conirol: Model reference control is another example of a pole--zero

cancellation type of controller. In a model reference controller, the feedback law is

designed to make the plant follow the output of a model driven by the reference

sequence:

* q---dM(q-1)y (k)=
p(q-l)

r(k) (2.50)

where

r(k) isthe reference input to the model

ranis
M(q -1) = m o + ml q-I + ...mnmq

p(q--1) = 1 + plq -1 + ...Pnpq-np

The control law used in the model reference scheme is of the same form as the

control law used in a d-step ahead control scheme:

F,(q-1)B(q-1)u(k) = --G(q-1)y(k) + H(q-1)r(k) (2.sl)

with

ng = na - 1

ni_= d-I

61

If F'(q -1) and G(q -1) are chosen such that:

with

and

F,(q-l)A(q-l) + q-d G(q-l) = p(q-1)C(q-1)

na+d-l>np+nc

H(q -1) = M(q-1)C(q -I)

(2.52)

then the closed loop response of the system is given by:

y(k) = q---dM(q-1) r(k) + F'(q-1)

p (q-l) p(q-1)

_k) (2.53)

and we see that the component of the output due to the reference sequence r(k),

matches the output of the model in equation (2.50). Notice that as in the case of

the d---stepahead controller,the plant must be minimum phase in order for the

controllerto provide bounded input signalsto the plant.

2.2.2 Controller Problems

In this section we describe the problems that can occur in the control

algorithms from section 2.2.1. The problems we address are divided into three main

categories:

• Controller/plant incompatabilities

• Wind-up problems

• Inaccurate plant models

_f

62

Controller/plant incompatabilities refers to any situation where the character of the

plant prevents a given control algorithm from working properly, (e.g. a pole

placement controller for a non co-prime system). The second category, wind-up

problems, refers to problems that result when a control sequence produced by a

marginally stable feedback law becomes saturated, [1,25]. The last category,

inaccurate plant models, denotes situations where model information from the

estimator may not describe the plant well enough to be used for control

applications. In the following discussions, we summarize problems in each of these

categories and then show how the expert supervisory system may be used to detect

these problems and make the appropriate corrections to the controller.

Plant/controller incompatabil_ties: As described above, many situations exist where

a given control algorithm is not able to provide good performance for a specific

nature of plant dynamics. In the review that follows, we consider two instances of

plant]controller incompatibilities:

Minimum variance controllers,(d-step ahead, model

reference), with a non minimum phase plant

Non coprime plant with a pole placement style
of controller

For each case, we summarize the consequences of using that particular

controller]plant combination, and then go on to describe how the expert supervisory

system may be used to detect and compensate for emerging problems.

When a minimum variance controller such as the d-step ahead controller or

the model reference controller, is used with a non minimum phase plant, the

feedback filter of the controller will be unstable, (or marginally stable):

m

63

H(q_l)r(k) - G(q-1)y(k)

u(k) = (2.54)

F,(q-1) B(q -1)

nb

where B(q -1) = boiIIl(1 + riq"l) (2.55)

and there is at least one rj such that]rj] > 1

As a result, the input signal to the plant grows and eventually saturates;

performance of the controller is poor.

In order to spot non minimum phase systems when a minimum variance

controller is in use, the expert supervisory system monitors the level of saturation of

the controller. If the controller is saturated more than 50 percent of the time, and

the controller is a d-step ahead, or a model reference type, the supervisor

hypothesizes that the plant is non minimum phase. To check whether or not the

plant is non minimum phase, the supervisor runs a test which looks at the roots of

the B(q -1) polynomial. If B(q -1) does have roots on or outside the unit circle, the

supervisor switches the control law in use to either a pole placement style of

controller, or an internal model principle style controller depending on whether or

not deterministic disturbances are included in the model.

The second instance of plant]controller incompatabilities we listed was the

case where a non coprime system is regulated by a pole placement controller. As

described earlier, the A(q -1) and B(q -1) polynomials may have common roots,

(non coprime), when the model is over parameterized or when deterministic

disturbances are included in the model. When common roots occur, the diophantine

equation used to solve for the control law coefficients will be singular and again poor

performance is the result.

64

The expert supervisory system detects emerging singularity problems with

the pole placement controller by periodically checking the determinant of the

Sylvester matrix that may be derived from the diophantine equation. If the

determinant becomes very small, the supervisor hypothesizes that a set of common

roots exists between the A(q -1) and B(q -1) polynomials. The supervisor checks

this hypothesis by running a root analysis test on the present model estimates to

check for the presence of common roots or possible deterministic disturbances. If

the results of the test show common roots on the unit circle, for all the terms of the

model, the expert supervisory system factors the model and switches the controller

to an internal model style controller. If over parameterization is the problem, the

system truncates the model as required and stays in the pole placement controller

mode. In both cases, the new model goes through same model validation stages that

we described earlier in our discussion of estimation problems, (see section 2.1.2).

Wind-up probl¢ms: When the feedback filter of a controller contains marginally

stable poles for disturbance rejection or setpoint tracking, there is a possibility that

during the transient phase of operation, the controller will have saturation

problems. In the worst case, the sign of the error between the output and the

setpoint sequence does not change and the controller tries to generate higher and

higher magnitude control signals. In this case saturation continues, and numerical

problems can occur in the control algorithm, [25].

Of the four control algorithms described above, we only check for wind-up in

the internal model principle style of controller. Although it is true that controller

wind-up can occur in the other controllers, (e.g. d---step ahead with non minimum

phase plant), the easiest solution in these cases is to switch to more appropriate

65

control laws. In addition, the internal model principle controller is designed to

reject deterministic disturbances, and may be expected to contain marginally stable

poles in it's feedback filter.

The system identifies possible wind-up problems in an internal model style

controller by watching for controller saturation. When saturation is present more

than 80 percent of the time, the expert supervisory system assumes that wind-up is

the problem and tries to eliminate the wind up with a projection algorithm. The

projection algorithm maps the roots of the disturbance model, D(q-1), back into the

unit circle, for a certain period of time. If wind-up is the truly the problem, the

stabilized feedback filter should allow the controller to come back out of saturation

and resume normal operation.

Inaccurate models: So far all of our discussions on control algorithms and their

associated problems are based on the assumption that our information about the

plant dynamics is good. Situations do arise however, where the modelling

information supplied to the controller is not adequate for good control. In these

cases the expert supervisory system has the ability to initiate a training sequence,

where the plant is run in open loop until model accuracy is acceptable. We note

that abandoning closed loop control is a last resort, and is used only when all other

methods have failed to provide good model estimates.

The supervisory system switches to open loop if:

The covariance matrix is high, model error is increasing rapidly
saturation is high, and the controller is not an internal
model principle style controller

The variance of the output from the setpoint is high, the
controller is saturated, and the controller is not an internal
model principle style controller

B

66

If the controller is an internal model principle style controller, the supervisory

system entertains the possibility that wind-up is the source of the problem and

executes the controller projection algorithm. If saturation still exists after the

projection algorithm is used, the expert supervisory system revises it's wind-up

hypothesis and begins the open loop training procedure.

In the preceding chapter, we have reviewed the operating principles of

indirect adaptive control schemes as well as implementation problems with indirect

adaptive controllers. Two main problem areas were addressed; estimation algorithm

problems and control algorithm problems. In each case, we discussed conditions

that lead to poor performance for the algorithms in use, providing theoretical back

ground and examples where possible. After characterizing the problem areas for

each algorithm, we introduced methods that the expert supervisory system uses to

diagnose and correct problems with the adaptive controller algorithms. We note

that in a large part of the diagnostic and treatment procedures described for the

supervisory system, the ability to interact with the adaptive controller environment,

as well as the ability to plan future actions is of key importance. In chapter three,

we will show how the architecture of the expert supervisory system supports

interactive diagnosis and planning, making possible the implementation of the

adaptive controller supervision functions that we described above.

CHAPTER 3

The Expert System Supervised Adaptive
Controller Architecture

As we have described in chapters one and two, adaptive controllers are

susceptible to many problems which occur routinely in practice, (excitation

problems, over parameterization, wind-up, etc.). In order to improve the reliability

of adaptive controllers, researchers, beginning in the mid 1980's, have been using

expert system based supervisory levels in conjunction with adaptive controllers

[44-53]. Basically, the supervisory level monitors some set of measurements from

the adaptive controller, and takes corrective actions whenever these measurements

indicate the existence a certain problem with the adaptive controller. Many

versions of expert supervised adaptive controllers now exist; however, as discussed

in chapter one, none of the systems utilized any intelligence about the time

dimension of supervision problems. With no temporal reasoning capabilities, these

supervisory systems are limited to functions that do not require interaction with the

adaptive controller environment, or any kind of task planning. In our discussion of

the diagnostic and treatment functions we developed for our expert supervision

system, (chapter 2), it was shown that the supervisory system must have the ability

to plan a sequence of tests for the adaptive controller, and then wait for the results

to identify problems; intelligence of temporal concepts is of key importance.

In the discussions that follow, a description of the expert system supervised

adaptive controller that we built to provide these functions is given in three parts.

We begin in section 3.1, with an over view of the expert system supervised adaptive

controller, describing the main pieces of the controller, and briefly reviewing each of

the functions of these pieces. In section 3.2, we discuss the "signal-to- symbol"

67

68

interface of the system. As will be shown, the signal-to--symbol interface provides

the link between the "physical domain" of the adaptive controller environment, and

the "symbolic domain" of the expert system based supervisory level. Finally, in

section 3.3, we provide detailed discussions of the expert system component of the

supervisory architecture. The expert system, or "expert system module", is based

on an expert system shell called IPEX, (Interactive Process EXpert), and contains

all of the functions required to manage interactive diagnostic and treatment

processes.

3.1 Over View of the Expert Supervised Adaptive Controller

The expert system supervised adaptive controller consists of four main

pieces, (see Figure 3.1):

• The adaptive controller environment

• The signal-to--symbol interface

• The expert system module

• The symbol-to-procedure interface

The adaptive controller environment is the lowest level of the system, and contains

all of the estimation algorithms, control algorithms, and adaptive control level

diagnostic and treatment algorithms. The expert system module is the highest level

of the system and contains all of the supervisory knowledge on adaptive controllers.

It's functions include, analysis of adaptive controller measurements, compilation of

diagnostic plans, and scheduling of corrective actions. The signal-to symbol and

symbol to procedure interfaces provide the "translations" that are necessary for

69

EXPERT SYSTEM MODULE

SIGNAL-TO-SYMBOL

INTERFACE

SYMBOL-TO-PROC.

INTERFACE

Diagnostic and
Treatment I Proc.l
Procedures I [

Adaptive

Controller
ADAPTIVE CONTROLLER
ENVIRONMENT

Figure 3.1 Expert Supervised Adaptive Control Architecture

?0

communications between the "physical domain" of the adaptive controller

environment, and the "symbolic domain" of the expert system module.

During operation, the signal-to-symbol interface gathers data from the

adaptive controller over a constant time interval called an expert system sampling

interval, (ESSI), calculates statistics from the raw data, and then converts these

statistics into a format that the expert system module can understand. At the end

of every ESSI, the expert system module reads the signal-to--symbol interface, and

receives a description of the "state" of the adaptive controller. If a problem with

the adaptive controller is detected, the expert system module may have to dispatch

diagnostic procedures to the adaptive controller environment to obtain positive

identification of the problem. In addition, when the expert system module has

established that a given problem exists, it formulates a list of corrective procedures

that may be used with the adaptive control algorithms to eliminate the problem.

The output of the expert system module is a schedule containing the names and

execution times of any diagnostic procedures or corrective actions that the expert

system wants to run. Once a schedule has been formulated, the symbol-to-

procedure interface provides the link between the expert system module and the

adaptive controller environment, by activating procedures in the adaptive controller

environment when their scheduled starting times arrive.

The process we have just described for the operation of the expert supervised

adaptive control system, may be thought of using the analogy of a feedback control

system. In this case, the adaptive controller would represent the plant that we want

to control, and the expert system module could be likened to a feedback controller.

Between the "plant", (i.e. the adaptive controller), and the "controller", (i.e. the

expert system module), we use the signal-to--symbol interface to sample the state of

71

the adaptive controller, and convert it to a representation that the expert system

module can use. In our feed back control loop analogy, the signal-to- symbol

interface plays the part of the A/D converter in a conventional digital control

system. The "feedback signal" generated by the expert system module, consists of a

schedule containing the names of diagnostic and treatment procedures to apply in

the adaptive controller environment. The symbol-to-procedure interface completes

the feed back loop on the adaptive controller, and provides a function analogous to

the D/A converter in a digital control system, taking procedure names from the

schedule that the expert system module formulates, and then turning those

procedures on in the adaptive controller environment at the specified times.

At this point we have reviewed the structure and basic functions of each of

the parts of the expert supervised adaptive controller. It was shown that the expert

supervised adaptive controller can be thought of as a two level control system where

the expert system module at the upper level of the system, plays the part of a

controller for the adaptive controller at the lower level of the system. In the

discussions that follow, we provide more detail about the system beginning with the

signal-to-symbol interface and the proceeding with the expert system module in

section 3.3.

3.2 Signal-to-symbol Interface

There are many applications like speech understanding, medicine, etc., where

expert systems are used to interpret signals from a physical process,

[69-72,74,75,79]. In order to perform reasoning about the physical process, these

expert systems require some form of interface to compact the large number

72

of physical measurements available, into a form usable by the expert system. A

simple example of a signal interpretation system is the Tektronix DETEKTElt

system [73]. The DETEKTER system uses a grammar called GLIB to express

signals from diagnostic tests as sentences:

<Signal_l> attains < amplitude I frequency > of <1 I 60>

In this system, the interface between the signal and the system is a human

technician. The HASP/SIAP ocean surveillance system is another example of a

system that uses a human interface between the signal and the expert system. In

this case, low level processing like pattern matching and spectral decomposition are

performed and entered into the expert system in a sentence format [74]. In more

autonomous systems like the HEARSAY II speech understanding system, the

system employs a "front end" to convert the results of low level processing into the

proper symbolic forms [75]. The common factor between all of the different systems

examined, is that the important information in the signals is summarized by some

sort of processing of the numerical data, and then this processed data is put into a

format which the expert system can utilize.

In the expert supervised adaptive controller architecture we built, the task of

data conversion from the adaptive controller environment to the expert system

module is performed by the signal-to--symbol interface. The signal-to-symbol

interface has three basic functions:

Calculate statistics from the adaptive controller
measurements,and convert it to a form usable by the

expert system module

• Compilation of external procedure results

73

• Supplying model structures and parameters to
the model frame

In the presentations that follow, we describe each of these functions in detail,

showing the form of the data that is actually received by the expert system module

from the signal-to-symbol interface.

The first task listed above for the signal-to-symbol interface is the sampling

of statistical information from the adaptive controller. As described in chapter 2,

there are many measurements available from the adaptive controller that can be

used to indicate the future behavior of the adaptive controller. Some of these

measurements, such as the trace of the covariance matrix, are readily available from

the adaptive control algorithm itself. Others, like output/setpoint variances and

scaling statistics, must be computed independent of the adaptive control algorithm.

One of the functions of the signal-to-symbol interface is to compile these statistics

from the measurement of the adaptive controller environment, and then convert

them into the proper format for storage in the factbase. The conversion process has

two parts. First statistics are calculated from measurements taken in the adaptive

controller environment over a constant time interval called an expert system

sampling interval, (ESSI). In the present version of the supervisory system, one

ESSI lasts for a duration of 30 adaptive controller sampling intervals. In the second

phase of the conversion process, at the end of each ESSI, the signal-to-symbol

interface puts all of the computed statistics in a standard format and then passes

the results into the factbase. The form of the factbase is given as follows:

74

((STATISTIC_NAME STATISTIC VALUE)

(ELAPSEDTIME 0)

(VALIDITY INTERVAL 0 < T < 1))

For example, if the signal-to-symbol calculates the variance of the model

prediction errors to be .5 over a period of one ESSI, the information passed to the

factbase will be:

((EPS .5) (ELAPSEDTIME 0) (VALIDITY INTERVAL 0 < T < 1))

In addition to providing information about the adaptive controller to the

expert system module, the signal-to-symbol interface is also responsible for the

transmission of diagnostic procedure results into the expert system module. When a

diagnostic procedure has finished executing in the adaptive controller environment,

it notifies the signal-to-symbol interface that results are available by setting a

function result flag for the procedure. When the signal-to-symbol interface

receives a function result flag for a given procedure, it retrieves the actual results of

the procedure and composes a phrase in the standard format that follows:

(FUNCTIONRESULT (PROCEDURENAME ARGUMENT)

{ RESULT FORM})

(ELAPSEDTIME 0)

(VALIDITY INTERVAL 0 < T < { RESULT VALIDITY TIME}))

For example, consider the function "INPUT_TEST", which uses the auto

75

correlation test described in section 2.1.2 to confirm excitation problems. If the

INPUTTEST diagnostic is finished executing and returns a result of "FALSE",

(meaning insufficient excitation), with a validity period of two ESSI, the

signal-to-symbol will put the following entry in the factbase:

(FUNCTION_RESULT (INPUT_TEST NONE) FALSE)

(ELAPSED TIME 0)

(VALIDITY INTERVAL 0 < W < 2))

The last function that the signal-to-system performs, is the transmission of

parameter estimates and model structures, into the model frame of the expert

system module at each expert system sampling interval. Six pieces of information

are associated with each model parameterization that the signal-to-symbol passes

to the model frame:

• Order of the A(q -1) polynomial, na

• Order of the B(q -1) polynomial, nb

• Delay value, d

• Order of the C(q -1) polynomial, nc

• Filter polynomial D(q -I)

• Model parameters

In summary, the signal-to-symbol interface provides all of the functions

that are necessary for communications between the adaptive controller environment

and the expert system module. One of the important features to notice about the

76

signal-to-symbol interface,is that it communicates with the ESM at regular time

intervals,not in the a synchronous mode that many of the other supervisory systems

have adopted. Although asynchronous communication has the advantage that the

expert system isinvoked only when a problem occurs, we submit that synchronous

communication allows the ESM to detect evolving problems before they become

serious. In the next section,we leave communication issuesbehind and look at how

the expert system module processes the information it gets from the

signal-to--symbol interface to form a schedule of diagnostic and treatment

procedures for the adaptive controller.

;).3 Expert System Module

As mentioned earlier,the supervisory functions that we developed for the

expert supervised adaptive controller,require that the expert system has the ability

to:

• Interact with the adaptive controller environment

• Reason about time

• Produce diagnostic and treatment plans

Although many expert systems exist which provide diagnosis of a physical

process, [34], very few of these systems are capable of planning a time sequence of

diagnostic procedures that interact with the physical process, [79,81]. The expert

system module that we use to supervise the adaptive controller is based on an

expert system shell called IPEX, (Interactive Process EXpert), which we developed

specifically to handle this kind of interactive, time distributed diagnosis for physical

77

processes. The discussions that follow are divided into three parts. In the first part,

section 3.3.1, we discuss the internal structures of the expert system module, and

show how time issues are reflected in these structures. Knowledge representation

features of the system are presented in section 3.3.2, with special emphasis on the

ability of the knowledge representation language to express temporal relationships.

Finally, in section 3.3.3, we describe the process by which the expert system module

forms a schedule of diagnostic and/or corrective procedures, beginning with data

from the signal-to-symbol interface, up to the point where the schedule is

completed.

3.3.1 Internal Structure of the Expert System Module

The expert system module, (ESM), iscomposed of six main parts;a factbase,

rulebase,scratch pad, procedure library,schedule structure,and a model frame, (see

Figure 3.2). In this section we will discuss each of these parts and give a brief

explanation of how each structure is used in the scheduling process. One of the

most important features of the internal structureof the ESM, is the explicituse of

time in the data structures. As willbe shown later,the incorporation into the data

structures of the ESM allows elegant truth maintenance and scheduling.

Factba,se: The factbase serves as the place where the expert system module stores

information from the signal-to-symbol interface, as well as results from procedures

executed in the adaptive controller environment. During operation of the ESM,

facts and function results from the factbase are used to detect problems and provide

evidence for the diagnostic process. The factbase structure may be thought of as a

78

FACTBASE

SCRATCHPAD

RULEBASE

PROCEDURELIBRARY I

MODEL FRAME

SCHEDULE

/
i

Figure 3.2 lntemal Structures of the Expert System Module

r

FACTBASE

FACT_I

• Elapsed_Time Time_l

• Validity Interval

T1 _< Time_< T2

I FACT_N

0

79

Figure 3.3 Factbase Structure

80

frame with three slots, (see Figure 3.3). The first slot in the factbase contains the

measurement data and function results we wish to store. The second slot is called

the elapsed time slot and tells how long a given piece of information has been in the

factbase. The third slot is the validity interval slot, and tells over what time

interval the fact is valid. A fact remains in the factbase only as long as the elapsed

time stays within the validity interval. When the elapsed time of a given fact falls

outside of the validity interval, the fact is removed from the factbase.

Rulebase: The rulebase contains the internal knowledge that the expert system uses

to diagnose and correct problems with the adaptive controller. Rules are written in

the general form:

IF (ANTECEDENT I)...

THEN (CONSEQUENT I)

(ANTECEDENT M))

(CONSEQUENT N)))

where the antecedents and consequents of the rule are written in a fairly general

knowledge representation language that we describe in section 3.3.2. The rules in

the rulebase may be divided into three categories; classification rules, diagnosis

rules, and treatment rules. Classification rules are used to identify possible

problems in the adaptive controller environment, and are used by a forward

chaining style of inferencing algorithm. Classification rules do not in general give

exact diagnosis, but provide a first guess as to what problems might exist.

Diagnosis rules are used to generate complete proofs of any given hypothesis and are

used by a backwards chaining algorithm. Finally, treatment rules are used by a

forward chaining algorithm to provide a list of procedures that the ESM may use

m

81

in response to any given problem.

Scratch pad: As the name implies, the scratch pad is used to save incomplete work,

and is related to the "Black Board" concept used for the HASP/SIAP project,

[74-77]. Specifically, the scratch pad is used to hold proof trees generated from the

rules base that cannot be resolved until results from procedure calls in the adaptive

controller environment are known. The scratch pad consists of two slots,(see Fig.

3.4), one containing the entire proof tree for a given hypothesis, (proof tree slot),

and the other containing the particular proof that the ESM is using to prove the

hypothesis with, (proof slot). The scratch pad is useful in that it eliminates the

need to regenerate proofs at each expert system sampling interval, (ESSI), and also

allows us to keep track of methods it has already tried to prove the hypothesis with.

Procedure Libra,: The procedure library contains information about all of the

external procedures that the expert system uses in it's diagnosis and treatment

functions, (see Figure 3.5). The procedure library is a frame structure six slots

corresponding to the name of a procedure, a direction slot, a controlled variable

slot, precondition slot, procedure duration slot, and finally a result validity time

slot.

The direction slot provides a means by which to specialize a given procedure

with added directives. For example, a dither signal procedure for the adaptive

controller called ADDEXCITATION has two directives; REF, and U. The

"REF" directive causes the ADDEXCITATION procedure to add a dither signal

to the reference input of the adaptive controller, while the 'U" directive causes the

dither signal to be added directly to the input of the plant. If no directives are used

f

SCRATCHPAD

f

Proof Tree Slot:

(hypothcsis, l

(or proof_l 1
proof_12

proof_ln))

Proof Slot:

(hypothcsis_l proof_lk)

Figure 3.4 Scratchpad Structure

J

82

83

r

PROCEDURE LIBRARY

I

Procedum_l:

r

Directive_l

• controUedvariables

• preconditions
• execution time

• result validity time

I Directive_k

Procedure_n

Figure 3.5 Procedure Library Structure

84

with a procedure, then the direction slot contains the word "NONE". Note that to

access the remaining slots in the procedure library a procedure/directive pair is

needed since different directives of the same procedure may have totally different

slot instantiations.

The controlled variable slot tells what variables in the adaptive controller

environment a procedure with a given directive manipulates directly. In the

example of the "ADDEXCITATION REF" procedure above, the reference input

to the controller would be the controlled variable. The information in the controlled

variable slots is used in the scheduling facility of the ESM to avoid scheduling

procedures that control the same variables simultaneously.

The precondition slot supplies a list of preconditions for running a given

procedure/directive pair in the adaptive controller environment. The purpose of

including this information is that it may be necessary to take procedures off of the

schedule for precondition violations that were scheduled several expert system

sampling intervals, (ESSI), earlier.

The procedure duration slot tells how long a given procedure/directive pair

takes to execute, while the result validity slot tells how long the results of a

procedure call in the adaptive controller environment, (if any result), may be

considered correct after the execution of the procedure. The information from the

procedure duration slot and the result validity slot are used by the scheduling

facility of the ESM to ensure that any schedule formulated will make procedure

results available at the right times for diagnosis.

In summary, the procedure library provides information to the ESM about

the procedure available for diagnosis and treatment of the adaptive controller. As

discussed above this information is used in the scheduling process to:

m

85

• coordinate validity intervals of externally executed
procedures

• ensure that no conflicts arise between the controlled

variables of the scheduled procedures

• maintain proper sequencing of procedure results

Notice, the information stored in the procedure library does not contribute to the

adaptive controller diagnostic and treatment knowledge of the ESM in any direct

way.

Schedule: The schedule is a frame style structure with six slots; the procedure name

slot, the direction slot, an elapsed time slot, start time slot, end time slot, and an

associated hypothesis slot, (see Figure 3.6). The procedure name slot and the

direction slot simply specify a procedure directive pair as described for the

procedure library. The elapsed time slot tells how long the procedure directive pair

has been on the schedule. The start time slot contains the scheduled starting time

of the procedure_directive pair. Once the elapsed time is greater than or equal to

the starting time, the procedure is activated with the given directive in the adaptive

controller environment, and the start time slot is filled with the phrase "procedure

on". Similarly, the end time slot gives the scheduled ending time of the

procedure_directive pair. When the elapsed time of the procedure directive pair is

greater than the end time, the procedure_directive pair and it's associated slot

values are taken off the schedule. The last slot in the schedule is the hypothesis

slot, and contains a list of hypothesis that are dependent on the procedure. This

slot is useful since it allows the deletion of procedures on the schedule by association

with a given hypothesis.

f

SCHEDULE

Pro_dure_l:

• directive..k

• elapsed time on schedule
for procedure_l directive_k

• start time

• end time

• associatedhypothesis Hst

IProcedure n 1
Figure 3.6 Schedule Structure

86

87

Model Frame: The model frame serves as a storage location for alternate

parameterizations of the plant model that the expert system module may have

under consideration. The model frame has two slots; the "present best model" slot,

and the "new modal" slot. When the supervisory system is running, the parameters

from the estimation algorithm are loaded into the present best model, (PBM), slot

at the conclusion of each ESSI. The expert system module can then modify the

present best model with model analysis functions it has at it's disposal. Any

modifications of the model that the expert system module makes are then placed

into the new model, (NM), slot and estimation and control proceed with the new

model. After retuning of the new model is accomplished, the expert system module

can compare the new model with the original model, (i.e. the present best model), to

determine which model structure is actually better. In summary, we note that the

model frame provides the expert system with a model structure memory, making

s_rial identification experiments possible.

At this point, we have presented all six of the internal structures of the ESM.

A short review of the functions of these structures is given below:

Factbase

Rulebase

Scratch pad

Procedure

Library

Schedule

• Stores data from the signal-to-symbol interface
and results from diagnostic functions

• Contains knowledge on the diagnostic and treatment
level of the adaptive controller

• Stores proofs of problem hypothesis that cannot
be immediately resolved by the ESM

• Stores information needed for scheduling on all of
the procedures accessible to the ESM

• Stores procedures and their starting and ending times
as determined by the ESM

w

88

Model Frame • Stores model formulations that the expert system
module has under consideration

The most important thing to notice about these structures is that they were

developed out of need to handle diagnosis and treatment functions that evolve over

time.

Of the six structures listed here, the factbase, the procedure library, and the

schedule all include slots for time values. The slots enable truth maintenance in a

time varying environment, as well as planning and administration of diagnostic and

treatment procedures. The scratch pad structure is motivated directly by the need

to save the unresolved proof of a hypothesis, and then retrieve it later as diagnostic

results become available. Similarly, the model frame allows the storage of alternate

model parameterizations of the plant, making it possible to perform model analysis

distributed over time. In section 3.3.2, even the rulebase will be shown to have time

considerations built into it via the language used for knowledge representation. The

underlying theme of the structures making up the ESM is that diagnosis and

treatment of the adaptive controller must progress with time, therefore, the

structures of the ESM must be equipped so that they can also change with time.

None of the expert superrised adaptive controllers that we have reviewed have

internal structures that are as tailored to temporal issues as the structures in our

system, and as a result only simple time based diagnostic activities are possible. In

the following sections we will describe the language used for knowledge

representation, (section 3.3.2), and then go on to explain the sequence by which the

ESM produces a schedule of diagnostic and treatment procedures for the adaptive

controller.

m

89

3.3.2 Language of Knowledge Representation

Because of the interactive nature of the supervisory tasks that the expert

system module performs over the adaptive controller, the language used for

knowledge representation must be able to express relationships involving diagnostic/

treatment procedures that run in the adaptive controller environment, as well as

temporal concepts. In the following section, we will discuss the IPEX knowledge

representation language used by the expert system module to encapsulate adaptive

controller supervision knowledge. We begin with a presentation of the allowable

syntax of the language and then proceed to explain how temporal relations are

included of the language.

The basic syntax of the language is very simple and "LISP-like", with a

complete sentence in the language written as follows:

(FUNCTION ARGUMENT_I ...ARGUMENT_N)

The function may be either an "internal function", or an "external function", (also

referred to as external procedure). Internal functions are those functions that the

ESM can execute immediately. For example, functions like "EQUAL",

"LESS-THAN", etc., would be considered as internal functions. External functions

execute in the adaptive controller environment, forcing the ESM to wait at least one

expert system sampling interval before results of the external function are available.

An example of an external procedure in our expert supervised adaptive controller is

the excitation testing procedure, called INPUTTEST. INPUTTEST runs in the

adaptive controller environment for two expert system sampling intervals, and

9O

returns a "TRUE" or "FALSE" message to the expert system module depending on

whether or not excitation is adequate. Immediately following any given function in

a sentence of the knowledge representation language are the arguments of the

function. The arguments may be other sentences in the language, or simply phrases

or constants.

So far the description of the knowledge representation language is identical to

LISP; the difference between the two languages lies in how our knowledge

representation language is executed,(see Figure 3.7). Upon execution, the

interpreter checks to see if the first element of the sentence is a valid function. If it

is an internal function, the interpreter attempts to evaluate the arguments. In the

case where the function is an external function, the interpreter tries to evaluate it's

arguments and then checks the factbase for a result for that particular function and

set of arguments. If there is no result or arguments cannot be fully evaluated, the

sentence is returned with the evaluated, (or partially evaluated), arguments. At

this point, the best way to illustrate the interpretation of a sentence of the language

is by example:

Define the following "internal functions":

"is" (is a b) returns t when a = b; nil otherwise

"gt" (gt a b) returns t when a > b; nil otherwise

Define the following "external functions":

"volt_test" measures the voltage of some specified source

Suppose at the time of this example the following results are available •

(volt_test battery l) -_ 1.0 volts

(volt_test battery_2) -_ 5.0 volts

(volt_test battery_3) -_ 1.0 volts

91

Input a sentence for interpretation

yes _

Is sentence in the
facbase?

no

Is the first element of

the sentence an int-
ernal function?

no

Sentence is true

Are the arguments of
the internal function
evaluated?

yes

Evaluate the internal

function using the

present arguments

no

Is the first element of
the sentence an exter-
nal function?

l yes _ noReturn nil

Are the arguments of I yes

the sentence evaluated? I

no

Interpret arguments and I
then try to interpret the
sentence again

Interpret the arguments
and then try to inter-
pret the sentence again

Are there results in the
factbase for the ext.

function and it's args.

m nO1Retu the

sentence

Retum results

Figure 3.7 Interpretation of a sentence in the knowledge
representation language

O2

then:

(is (volt_test battery l) (volt test battery 2)) -_ nil

Results for both volt tests are available, so the sentence can be

totally evaluated.

(gt (volt_test battery._2) (volt._test battery_4)) -_

(gt 5.0 volts (volt_test battery__4))

In this case results for the volt test on battery__4 are not known, and a

volt test must be run in the physical environment to resolve the sentence.

In this case the sentence can only be partially evaluated.

(is (volt test battery_4) (volttest battery 5)) -_

(is (volttest battery_.4) (volt_.test battery_5))

Finally, there are no results for volt_.test's on battery._4 or battery 5, and none of

the sentence can be evaluated. A good explanation of the interpreter of the

knowledge representation language is that it evaluates as much of the sentence as it

can, and returns the sentence at it's present level of evaluation.

Having presented the basic syntax of the language, we now present the

temporal representation features included in the language. The knowledge

representation language has two temporal representation features; concurrent

representations, and sequential representations. Concurrent representations are the

default for the system, and require that the antecedents of a rule have validity

intervals which intersect in order for the consequents of the rule to be considered as

true. Sequential representations permit rules that are composed of a sequence of

93

information, and do not require that all antecedents have intersecting validity

intervals. In the following discussion, we describe each of these representation

constructs in greater detail, providing definitions and illustrative examples for both

concurrent and sequential styles of knowledge representation.

Rules that are a function of concurrent information are the most intuitive

style of temporal representation that the knowledge representation language

supports. Basically, all that we mean by the term "concurrent information)' , is that

there is a finite interval of time over which all of the antecedents of a rule must be

true in order for the consequents of the rule to be true. In more rigorous terms,

concurrency may be defined as follows:

Let

and

Pi be the antecedents of a rule, such that Pi is true

over the time interval [to(i), tf(i)], where t (i) is theo

beginning of the validity interval for Pi' and tf(i) is the

end of the validity interval for Pi"

Qi be the consequents of a rule

Then the consequents of the rule given by:

If(P1 P2 "'"Pn) Then (QI Q2 "'"Qm)

will be true when when the interval given by:

n

n [to(i)if(i)] (3.1)
i=1

is non empty. Furthermore the validity interval of the consequents of the rule will

be taken as the interval defined by eqn (3.1).

v_

94

The best way to describe the concurrent representation construct and it's

ramifications on scheduling, is via example. Consider the analysis of a diagnostic

rule for a simple power system:

(R1 cIF EST ATTE Y(VOLT--TEST BATTERY_--2)

(THEN (CHARGE IS ADEQUATE)))

Suppose in this case that the voltage of BATTERY__2 is known, and appears in the

factbase of the expert system module as follows:

(FUNCTION_RESULT (VOLT_TEST BATTERY__2) 2.5)

(ELAPSED_TIME 0)

(VALIDITY INTERVAL (0 < T < 4)))

In other words, BATTERY_2 has a voltage of 2.5 volts,which isconsidered as true

for a period of four expert system sampling intervals. In order for the consequents

of the rule, "CHARGE IS ADEQUATE" to be considered as true, we must execute

VOLT_TEST on BATTERY_I, such that the validity interval of the result

intersects with the result validity interval, [0 4], of VOLT_TEST on

BATTERY_2, (see Figure 3.8). Notice that because VOLT_TEST is an external

procedure, and has a finiteexecution time, (e.g.1 expert system sampling interval),

there will be constraints on when the expert system module can schedule

VOLT TEST and stillbe able to prove the consequent of the rule.

95

Q
;>

e4

¢q

;>

DgN

D_

;> tW_

O

,b..I ¢_

m

m

¢q
m

m

Figure 3.8 Example of Concurrent Temporal Representation

96

In the example above, we showed how rules may be written that model

knowledge where simultaneity of information is required. Often in diagnostic

applications, rules written only in terms of concurrent information are not adequate

for a given task. For example, in medical diagnostic problems, the physician may

base a diagnosis on how the patient reacts to a certain series of treatments over

time. In this case simultaneity of information is irrelevant. For a situation like the

medical diagnosis problem, we felt it necessary to include a sequential

representation capability in the knowledge representation language. Sequential

representation is accomplished through the use of special internal functions called

"sequencing commands". Basically, when a sequencing command is used in a

sentence, the arguments of the sequencing command will be understood to execute

in the order they appear in the sentence, and in non overlapping time intervals.

If we define "SC" as a general sequencing command, with "n" arguments, Pi'

and each Pi has an execution interval given by [tb(i) to(i)], and a result validity

interval of [to(i) tf(i)], then the sentence:

(SC P1 P2 "'" Pn)

represents a diagnostic activity where Pi's are executed subject to the constraints:

and

n

i_l[tb (i) to(i)] =
dis joint execution times

constraint

to(i) < tb(J) V i < j ;order of execution constraint

R

97

Depending on the functional definition of SC, the sentence may return a result only

after the entire sequence of Pi's have executed, or at some point during the

execution of the Pi sequence.

An example of a sequencing command that the knowledge representation

language actually uses, is the "SEQ_AND" command. Basically, the seq_and

command runs a set of tests with disjoint execution time intervals, in a specified

order, and then "AND's" the results together. The sentence:

(SEQ AND(IS (VOLT TEST BATTERY 1) 1.0
(VOLT--TEST BATTERY--2) 5.0 /lO0

represents a testing procedure where we run a sequence of voltage tests beginning

with battery 1 and continuing until battery 3, (see Figure. 3.9). At each step, we

check to see if the battery under examination has the desired voltage. If so, we

perform the next voltage test and so on until we complete the sequence of tests. If

all of the batteries are at the desired voltage, the sentence returns "true". If at

any point in the execution of the test sequence, a battery fails the test, the sentence

returns "nil".

Notice that sequencing commands allow us to write rules in terms of actions

that the ESM performs in the adaptive controller environment, and subsequent

reactions of the adaptive controller. For example, consider a rule that could be used

to identify excitation problems in the parameter estimation algorithm:

98

.=>"
m

t_

o

m

¢) O

;> m

_o

o"1

o

-_'

0 m

L_,

4.1 4--_

.._.1_1 .._li _'1

#' o -.. _ _-,_-,

__ --_

c

r.¢l
r.¢l

Figure 3.9 Example of Sequential Tern _oral Representation

99

(R._X (IF (SEQ AND(GT (GET VALUE P) 10.)

(EXCITATION__TEST NONE)

(LT (GET__VALUE P).1)))

(THEN (INSUFFICIENT EXCITATION)))

Where "GET VALUE" is an internal function that provides the numerical value of

it's argument, based on data from the factbase, P is the trace of the covariance

matrix, and "EXCITATIONTEST" is an external function that adds a dither

signal to the input of the plant for one ESSI. In this case the rule says that if the

trace of the P matrix is initially greater than 10., and then we run

"EXCITATIONTEST", and observe that P decreases after the test has run, then

insuf_cient excitation is a problem. Diagnosis is accomplished over a period of three

ESSI, with the aid of an external procedure invocation in the adaptive controller

environment, (EXCITATION_TEST). In other supervisory systems we have

described, this type of "probing" action cannot be used as the basis of diagnosis of

problems with the adaptive controller; the temporal representation and inferencing

techniques required are not available in these systems.

At this point we have reviewed the syntax of the knowledge representation

language as well as the concurrent representation and sequential representation

constructs of the knowledge representation language. Rules may be written using

any combination of the temporal representation constructs of the language,

providing the knowledge engineer with great flexibility to describe diagnostic and

treatment knowledge. In addition, our use of the notion of internal and external

procedures allows the expert system module to "think" about procedures that have

not yet been executed in the adaptive controller environment. As a result of the

100

generality of the knowledge representation language, diagnostic activities that stress

the adaptive controller and wait for reactions as a way to determine problems, are

feasible. None of the supervisory systems described in chapter one are capable of

this style of interactive, time distributed diagnosis. In summary we note that the

features of the knowledge representation language are among the primary

contributions we have made to enhance the effectiveness of supervisory systems for

adaptive control. In the next section, we bring together all of the topics discussed

so far to illustrate how the expert system module interprets data from the adaptive

controller environment, and decides what procedures to schedule for the diagnosis

and treatment of problems with the adaptive controller.

3.3.3 Scheduling

The purpose of this section is to describe how the expert system module

starts with data from the signal-to-symbol interface and eventually creates a

schedule of procedures for the diagnosis and treatment of the adaptive controller.

The sequence of events leading up to the compilation of a schedule may be divided

into three stages:

• preliminary diagnosis; identify plausible problems

• formal diagnosis; proof selection, constraint formulation

• scheduling; search for the "best" schedule.

The preliminary diagnosis stage provides a rough appraisal of what might be wrong

at the process level, based on information from the signal-to-symbol interface. In

101

the formal diagnosis stage, proofs are compiled for various problem hypothesis and

constraint lists are produced for external procedures that might be required by these

proofs. If a proof can be resolved, then the appropriate treatment routines are

retrieved. The last stage that the ESM performs is scheduling. In the scheduling

stage, the list of external procedures that the ESM wants to run, and their

associated constraints, are used as the basis of a search routine that looks for a

"lowest cost" schedule. In the following discussions we present each of the three

stages of the scheduling process, with special attention devoted to the search

algorithm used in scheduling.

In the preliminary diagnosis of problems in the adaptive controller

environment, data from the signal-to-symbol interface is used to provide a "best

guess" as to what might be wrong. For example in the case where we observe large

increases in the covariance matrix, in lieu of any other test results we might form

the following list of problems as a preliminary diagnosis:

• Over Parameterization of the Plant Model

• Insufficient Excitation

Preliminary diagnosis begins when data from the signal-to--symbol interface is read

into the factbase. Next a forward chaining algorithm uses the data in the factbase

with the classification rules in the rulebase to produce a list of hypothesis.

In the formal diagnosis stage, the ESM loops through the list of problem

hypothesis and uses a backwards chaining algorithm to build proofs for each

hypothesis. Once a proof tree is constructed, the ESM stores the proof tree on the

scratch pad. The form of a finished proof is given as follows:

102

(Hypothesis Or (And (Antecedent 1)... (Antecedentm))

(And (Antecedent nl).. (Antecedent nm))

where the antecedents may be other proofs or simply sentences written in the

knowledge engineering language. Once the ESM has compiled a proof, it evaluates

the proof to see whether or not the hypothesis is true or not. Evaluation of the

proof begins by using the knowledge representation language interpreter to evaluate

the antecedents at the "leaves" or "terminal nodes" of the proof tree. The truth

value of the hypothesis is then determined by combining these results with the

ttAND" and "OR" operators of the proof tree.

When evaluation of the proof tree returns "t", the expert system module

removes the proof tree from the scratch pad, as well as any procedures associated

with these hypothesis from the schedule. Once the ESM has "cleaned up", it uses a

forward chaining algorithm with the treatment rules in the rulebase to find

procedures that should be used for correcting the problem. If the evaluation of the

proof tree returns nil, any procedures associated with that hypothesis are removed

from the schedule and the proof tree is removed from the slot of the scratch pad

used to store proof trees. The specific proof used to show that the hypothesis is

false is retained in the scratch pad, as a way for the system to keep track of the

diagnostic methods it has already tried to detect a specific problem hypothesis.

When the proof cannot be resolved because the antecedents contain

references to external procedures, evaluation of the proof tree returns the proof tree

with partially evaluated antecedents. In this case, the ESM chooses one of the

103

paths through the proof tree as the method that it will attempt to prove the validity

of the hypothesis with. The path selection proceeds by generating the possible

paths in the proof tree that prove the hypothesis. Once all of the valid proofs are

found, the ESM checks the proof slot of the scratch pad to determine whether or not

any of the available proofs were used previously to try and prove the hypothesis.

When no proof appears in the scratch pad for the particular hypothesis, the ESM

simply uses the first proof available. In the case where there is a proof in the

scratch pad associated with the hypothesis under consideration, the ESM searches

through the newly generated proofs to see if the proof that the system used the last

time it tried to prove the hypothesis, (i.e. the proof in the scratch pad), is present.

If it is present,the system chooses the next available method of proof; other wise,

the system picks the first available proof. The purpose of this proof selection

procedure is to prevent the system from trying to prove a given hypothesis the same

way every time. After the ESM finishes proof selection for a given problem

hypothesis, it sets up all of the information required by the scheduling facility to

place the starting and ending times of the various external procedures in the chosen

proof. In particular, the ESM provides the scheduling facility with a list of

procedures that the proof uses, and a list of time constraints on those procedures.

Two types of time constraints are used by the ESM, concurrency constraints

and sequencing constraints. Concurrency constraints arise from the condition that

all antecedents of a rule must have truth values that are all known simultaneously

for a proof to be resolved. The results of any external procedures referenced in the

antecedents must therefore all be valid over some common time interval for

resolution of the proof. Sequencing constraints as discussed earlier, come from the

presence of sequencing commands in the knowledge representation language. Recall

104

from section 3.3.2 that a sequencing command allows us to write diagnostic

scenarios that are functions of ordered sets of procedures with non over lapping

execution intervals. When a sequencing command is encountered in the

interpretation of a proof, the ESM defines a sequence constraint list with the

procedures used in the arguments of the sequence command in the specifiedorder.

This listtellsthe scheduling facilitythat itcannot consider any schedules where the

procedures on the sequence listare either out of order, or having over-lapping

execution times. In addition to generating a sequence constraint list,the ESM must

also add the external procedures of the lastargument of a sequence command to the

concurrency constraints. This must be done so that the resultsof the lastexecuted

procedure embraced by the sequence command will be concurrent with the rest of

the resultsof the antecedents of the restof the proof. Once the constraint listsare

completed for allof the hypothesis under consideration,the ESM passes the listsof

external procedures and constraintsto the scheduling facility.

The scheduling facilityconsistsof a search routine that attempts to find the

t%west costtt schedule, (where cost is related to the execution time of the

schedule), containing all of the desired procedures without violating any of the

constraintspassed to itby the ESM. In addition to time constraints,the scheduling

facilitymust also ensure that any procedures that have over lapping execution time

intervals,on the schedule, do not manipulate the same variables in the adaptive

controller environment. In subsequent discussions, we describe the scheduling

process, beginning with a briefdescriptionof the search algorithm, then exploring

some of the terminology used, and finallystepping through the entire process in

detail.

105

The search technique used by the scheduling facility is a form of heuristic

search, where a set of partial schedules is generated at a given time, a cost is

associated with each of the partial schedules, and then the search continues from the

lowest cost partial schedule until all procedures are on the schedule. In the

following discussion we define the terms "partial schedule", and "cost", and then

describe in more detail how the search progresses.

One of the ways in which we constrain the search through the space of

possible schedules, is to consider only pieces of the schedule adding to the schedule

as the search progresses. The pieces of the schedule are referred to as "partial

schedules". At time zero, the search algorithm makes a list of all procedures that

may coexist together without time constraint violations or interference of controlled

variables. The resulting combinations are called "candidate partial schedules". To

create the candidate partial schedules at time 1, the search algorithm picks the

lowest cost partial schedule from time 0, and attempts to add other procedures to it

whose starting times are set to one. In general the search proceeds by finding the

lowest cost candidate partial schedule at time "k', and then adding on to that

schedule to produce the candidate partial schedules for time "k÷l".

At this point, we have mentioned the "cost" of a schedule many times

without actually defining what the cost function is. Basically the idea of the cost

function is to penalize schedules that require a long time to execute by giving them

a high cost. Similarly, we want to favor schedules with small execution times by

giving them a low cost. The basis of the cost calculations that the search algorithm

uses is the "controlled variable/ time area",(CVTA), of a given procedure. In

general, every procedure executed in the adaptive controller environment, controls

some set of variables for a finite amount of time. The product of the number of

106

variables the procedure uses and the time it executes, is called the procedure's

controlled variable/time area. For example, if a procedure called procedure 1 has

an execution time of 2 ESSIs and controls two variables, (see Figure 3.10), then it's

CVTA is equal to 4. Since the search algorithm does not retain any partial

schedules with controlled variable overlaps, the CVTA of a partial schedule can be

used to calculate a meaningful cost for the partial schedule in the following way:

cost = (CV*k - CVTA(partial schedule at time k))

+ (CVTA(procedures not on partial schedule)) 2

where

CV = the number of controlled variables in use

CVTA(x) - the controlled variable/time area of x

k - time index

In other words, the cost of the partial schedule is the sum of any controlled

variable/time area vacancies on the partial schedule, plus the square of the sum of

the CVTA's of any unscheduled procedures. The effect of this cost function is to

heavily penalize long execution times on schedules, and encourage densely packed

schedules, (i.e. no gaps between procedures). For the case where a procedure

controls no variables, as may be the case with passive testing algorithms, we modify

the cost frame work slightly by giving the procedure an artificially determined

CVTA:

CVTA(no controlledvariables)- CV*(execution time)

_ 107

>

g
0
t.)

CV_3 -

CV_2-

CV 1 u

Procedure_2

CVTA = 3

Procedure_l

CVTA = 4

1

1 2

!

3 4

Execution Time in ESSI's

Figure 3.10 Controlled Variable/Time Area

L

108

The rationale behind giving procedures with no controlled variables high CVTA's, is

that the high CVTA value will tend to cause the procedure to be placed near the

beginning of the schedule. Since the procedure controls no variables, the artificial

CVTA may be interpreted as meaning that scheduling the procedure sooner is

better than later.

Having now introduced all of the terminology necessary, we can now describe

the search algorithm in it's entirety. The search routine begins at time zero with a

list of procedures to be scheduled, a list of sequence constraints and a Ust of

concurrency constraints for those procedures. The first step in the search is to

generate all possible combinations of procedures at time zero, and then throw away

those combinations with constraint violations. To detect possible controlled

variable overlaps, the search routine consults the procedure library "controlled

variable slot" to see whether or not any of the procedures in a given combination

use the same variables. To check time constraint violations, the search algorithm

uses the procedure library to find out how long a given procedure will execute, and

how long it's results are good for. Then it uses the concurrency constraint list and

the sequence constraint list with the projected result validity times of the

procedures in the partial schedule that is under consideration. If no constraints are

violated, the search algorithm calculates a cost for the partial schedule and saves

the result. After examining all of the combinations, the search routine takes the

lowest cost partial schedule out of all the partial schedules generated to date, and

uses it as the basis for the next expansion.

In the next expansion, the search algorithm takes the partial schedule from

time zero and calculates the procedures it must still place. Then using a starting

time of one for each of the procedures, the search routine generates all of the

-- 109

combinations of the remaining procedures that when added to the partial schedule

satisfy all constraints. Notice that at the expansion from time one, the properties of

the procedures placed with starting time zero, must be taken into consideration.

Costs are calculated for each acceptable candidate partial schedule and stored. The

search algorithm scans the stored costs and begins at the lowest the search again at

the lowest cost partial schedule. The pattern repeats continuously, with candidate

partial schedules being produced by expanding the most recent lowest cost partial

schedule, then calculating the cost of candidates, and selecting the new lowest cost

partial schedule. When all of the procedures have been placed, the schedule is

complete.

3.4 Conclusions

In the preceding chapter, we described the architecture and functions of the

two level, expert supervised adaptive controller. It was shown that the system

consists of four main pieces, (the adaptive controller environment, the

signal-to-symbol interface, the expert system module, and the symbol-to-

procedure interface), and is analogous to a feedback controller for the functions of

the adaptive controller, (section 3.1). Detailed descriptions of the signal-to-

symbol interface and the expert system module were given in sections 3.2 and 3.3

respectively.

The expert system module of the system received particular attention in this

chapter, with descriptions of the internal structures of the system, it's knowledge

representation features, and the planning method used by the expert system

module. Temporal issues were discussed in great detail, and it was shown that each

110

structure of the expert system module is designed to accommodate a diagnostic and

treatment process that extends over time. Knowledge representation features of the

system, and how they relate to temporal reasoning were also presented, and it was

shown that the knowledge representation language used to encode supervisory

knowledge allows rules that are a function of concurrent and/or sequential

diagnostic information. In particular, the knowledge representation language, and

it's use of the notion of internal and external procedures, enable the expert system

module to "think" about what actions must be performed in the adaptive controller

environment in order to identify a given problem. As described in section 3.3.2, the

capability of the expert system module to perform this style of the interactive time

distributed diagnosis and treatment sets our system apart from the event driven

systems in the literature. In conclusion, we note that this chapter represents a

review of the functions of the "machine" that we used to supervise an adaptive

controller; as of yet none of the adaptive controller specific supervision knowledge

has been included.

knowledge that is

system.

In the next chapter, we describe the adaptive controller

incorporated in the "machine" to complete the supervision

CHAPTER 4

Knowledge Engineering

At this point we have given a comprehensive presentation of problems with

adaptive controllers, (chapter 2), and have described a two level expert system

supervised adaptive controller architecture that compensates for these problems,

(chapter 3). In this chapter we describe the process by which the diagnostic and

treatment methods reviewed in chapter 2 are incorporated into the expert

supervised adaptive control system. This process is known as "knowledge

engineering", and involves three stages:

Selection of feature variables that the signal-to-symbol
interface measures from the adaptive controller environment

Development of rules that manage the diagnosis and treatment
activities of the expert system module

Adaptation of diagnostic and treatment procedures into the

supervision system

The first stage of knowledge engineering, selection of feature variables, is the task of

choosing a set of variables that allow the expert system module, (ESM), to "see"

what is going on in the adaptive controller environment. The second stage, rule

development, is the process by which the adaptive controller diagnostic and

treatment knowledge described in chapter two, is transformed into a set of rules

that the ESM can use. The last stage of knowledge engineering listed here,

procedure adaptation, refers to the information about the diagnostic and treatment

procedures that we must provide the ESM with in order for the system to perform

its planning and inferencing functions.

111

112

In the discussions that follow, we step through the knowledge engineering

process, beginning with a review of the variables that the signal-to-symbol

interface measures from the adaptive controller environment in section 4.1. In

section 4.2, we provide an overview of the knowledge contained in the rulebase of

the expert system module. Problem areas that the system addresses are categorized

here, as well as a description of the types of rules that each problem category uses

during the supervision process. Finally in section 4.3 we give a detailed example of

the knowledge engineering process for the case of over parameterization problems.

In addition to examination of rule structures for over parameterization diagnosis

and treatment, we illustrate the "procedure adaptation" aspects of knowledge

engineering with definitions of the internal and external procedures referenced by

the rules, and procedure library instantiations for the external procedures in use.

Since the process of knowledge engineering is quite repetitive, we provide a high

level of detail for only the over parameterization case and refer the reader to the

appendices for complete listings of the rulebase and diagnostic/treatment procedure

definitions.

4.1 Adaptive Controller Feature Variables

The first step in knowledge engineering for the expert supervised adaptive

controller, is to select a set of feature variables that describe the adaptive controller

and allow some indication of its future behavior. This part of the knowledge

engineering task corresponds to the decision of what the ESM needs to "sense" in

order to diagnose problems with the adaptive controller. In this section we describe

the thirteen feature variables that are used in the present version of the expert

113

supervised adaptive controller. In each case, a definition of the variable is given, as

well as a brief description of the problem conditions that the variable may be used

to detect.

1. Normalized Trace of the Covariance Matrix: The trace of the covariance matrix is

a measure of the convergence of parameter estimates, and an indicator of over

parameterization problems and low excitation problems. For our purposes, the

trace normalized by the dimension of the covariance matrix is a more useful

measure of the properties of the estimation algorithm, since judgments based on this

variable will not be affected by the dimension of the covariance matrix. The

normalized trace of the covariance matrix is calculated at the end of each expert

system sampling interval, (ESSI), as follows:

n

1 I] Pii(k-1) (4.1)
n i=l

where n = the dimension of the P matrix

_. Difference in the Normalized Trace of the Covariance Matrix: The difference in

the normalized trace of the covariance matrix is used to detect growth of the P

matrix, an indication of over parameterization or low excitation problems. This

variable is calculated by taking the present value of the normalized trace and

subtracting the value of the normalized trace at the last ESSI.

_1. The Variance of the Model Residuals: The variance of the model residuals is used

as a check on the quality of the estimated model parameters, and may indicate

114

system changes, bad initialconditions,poor scaling,or that open loop training is

required. The variance of the residualsis based on data gathered over one ESSI,

and iscalculated as follows:

k -I k -t 2

ko i.0 ko i.0

(4.2)

where e(k) = y(k)- opT(k-l) 0(k-1)

ko isthe number of adaptive controllersamples per ESSI

g. Di??erence in the Variance of the Model Residuals: The difference in the variance

of the model residuals is calculated by subtracting the value of the model residual

variance at the last ESSI from its present value. This variable allows the system to

spot increasing model error trends that are associated with changes in the plant

dynamics, bad initial conditions, etc.

5. Variance of the Output about the Setpoint: When looking into the possibility of

adding excitation signals to the plant input, or appraising controller performance

it is important to know how well the plant output is tracking the setpoint. For

these reasons we calculate the variance of the plant output about the setpoint of the

controller over each ESSI as one of the features of the adaptive controller:

k -1

1 _ (y(k-i) - r(k-i))2

k0 t,.o

(4.3)

115

6. Difference in the Output/Setpoint Variance: As in the case of the other difference

variables mentioned above, the time difference of the output/setpoint variance

allows the system to identify trends and possible instabilities.

7. Controller Saturation Index: The controller saturation index is used to tell the

system what percentage of the time the control signal is saturated. The controller

saturation index is used to detect control algorithm problems such as non minimum

phase systems and windup. In addition the saturation index is also used as part of

the decision process for initiating an open loop training sequence or adding an

excitation sequence to the input of the plant. The saturation index is calculated as

follows:

k -!

k 0 t-1

(4.4)

where flu(k)]
[1 if u(k) is saturated

[0 if u(k) is not saturated

8. Projection Alqorithm Saturation Index: As described in section 2.1.3, the tLML

estimation algorithm requires that the roots of the _(q---1) polynomial are within

the unit circle. To guarantee this condition, we include a projection algorithm in

the parameter estimator that adjusts the parameter correction vector, (eqn. 2.6),

such the _(q-1) polynomial is always stable. In some cases the projection

algorithm is unable to update the parameter estimates and a condition that we call

projection algorithm saturation occurs. The purpose of the projection algorithm

m

116

saturation index is to measure the fraction of each ESSI that the projection

algorithm is saturated, and alert the system to the possibility of bad initial

conditions on the parameter estimates. The projection algorithm saturation index is

calculated as follows:

k -1

ko i.o

(4.5)

where p(i) =

1 i f the projection algorithm is saturated

0 otherwise

9. 5Calinq Index: The scaling index is based on measurements of the input and

outputs of the plant, and is used to decide when the scaling of the regression vector,

_k), should be adjusted. The index is calculated over a time interval of one ESSI

as follows:

k -I
o

P, I y(k-i) I
tffi0

k -!
o

c + s l u(k4)l
iffiO

(4.6)

where c is a small positive value used to prevent division by zero

117

10. Determinant of the Sylvester Matrix: When solving the diophantine equation for

the control law polynomials, F(q -1) and G(q-1), it is necessary to invert a sylvester

matrix, M , whose elements are composed of the parameter estimates of the plant
S

model. Any time common roots between the A(q -1) and the B(q -1) polynomials of

the model, as for example in the case of over parameterization or modelled

deterministic disturbances, the sylvester matrix becomes singular, and the controller

behaves unpredictably. In order to avoid problems with the calculation of control

law coefficients, the signal-to--symbol interface calculates the determinant of M at
$

the end of each ESSI. Any time the determinant becomes very small, it serves as an

indication to the ESM that deterministic disturbances or over parameterization may

be present, and that control algorithm changes may be necessary.

11. Control Law Name: This variable simply tells the system which of the control

policies the adaptive controller is presently using; d-step ahead, model reference,

pole placement, internal model principle, or open loop.

1_. Difference in the Norm of the Parameters: The difference in the norm of the

parameters is used primarily to show when the parameter estimates have converged.

The difference is calculated from the present ESSI to the end of the last ESSI:

II e(k)II - IIO(k-ko)II (4.7)

13. Averaqe Value Of _he Forqet_inq Factor: When the parameters of the plant

model change with time, it may be necessary to adjust the value of the forgetting

factor. For this reason we include the average of the forgetting factor over a time

118

span of one ESSI:

k -t

]Co i=O

(4.8)

We have now reviewed all of the feature variables that the ESM receives

from the signal-to--symbol interface. We note that the list given above could

certainly be expanded; our experience has shown however, that these variables give

a good indication of problems with the adaptive controller. In the next section, 4.2,

we look at the knowledge organization that is used to interpret the feature variables

described above. Specifically, we present the types of rules present in the rulebase,

and then provide a listing of the rules associated with the problem areas that the

ESM addresses.

4.2 Overview of th_ Rulebase:

In this section, we summarize the knowledge about adaptive control that is

included in the rulebase. We begin with a review of the general rule classes used;

i.e. classification rules, formal diagnostic rules, and treatment rules. Subsequently,

we provide a taxonomy of the various problem areas that the rulebase contains

information about. We note that the organization of the rules follows closely from

our discussions in chapter two about adaptive control problems. The main purpose

of the section is to provide a "directory" through the different areas of the rulebase,

which appears in its entirety in the appendix.

m

119

As described in section 3.3.1, the rulebase has three different types of rules:

• Classification Rules

• Formal Diagnosis Rules

• Treatment Rules

Classification rules are used by the ESM in a "data driven" mode, (i.e. forward

chaining), to produce hypothesis about problems with the adaptive controller.

Classification rules all include a modifier on their consequents that informs the

system that the consequents of the rule are only hypothesized, not statements of

fact:

(P.ule# (IF (ANTECEDENT 1)

(ANTECEDENT M))

(THEN (PROBLEM_HYPOTHESIS(CONSEQUENT 1))

(PROBLEM_HYP OTHESISiCONSEQUENT N))))

Note, classification rules will only reference internal functions and measurement

data from the factbase, no external function results are included.

Formal diagnosis rules are used by the expert system module to prove the

problem hypothesis that the classification rules generate. In this case of formal

diagnosis rules, the interpreter starts with the consequents of the rule and works

back to the antecedents, to see what conditions must be fulfilled to prove the

hypothesis. This method of inferencing is called backward chaining and allows rules

120

to be written as functions of measurement data, internal procedures, and external

procedures.

The remaining type of the rules that are present in the rulebase are

treatment rules. Treatment rules are used by a forward chaining algorithm, (as in

the case of classification rules), and take the form:

(RULE# (IF (HYPOTHESIS IS TRUE)

(ANTECEDENT 1)

(ANTECEDENT M))

(THEN (CONSEQUENT 1)

(CONSI_QUENT N)))

If a given problem hypothesis is true, and any additional antecedents on the

treatment rule are true, the expert system module knows that the consequents of

the rules are to be used as the instructions for correcting the problem.

Having described the types of rules present in the rulebase, we now proceed

to discuss the organization of the adaptive controller supervision knowledge

contained in the rulebase. As shown in figure 4.1, the problem areas that the

rulebase includes may be thought of as a tree structure where estimator problems

and control algorithm problems make up the two main branches. In the discussions

that follow, we begin with a review of the organization of the estimator problem

knowledge, and then consider the structure of control algorithm knowledge

contained in the rulebase. In each case, a brief review of each particular problem is

given, along with a listing of the associated classification, formal diagnosis, and

treatment rule numbers. In addition, we summarize the functions of each rule and

121

provide short descriptions of important diagnostic and treatment procedures that

the rules use. We note that this section is meant to serve as a sort of directory for

those interested in examining a set of rules for a specific problem; no detailed

information about the rule formulations are given.

The rulebase contains knowledge about seven specific estimation algorithm

problems; over parameterization, insufficient excitation, deterministic disturbances,

bad initial conditions, models with zero valued coefficients, numerical problems, and

plant changes.

Over Parameterization: Over parameterization is an example of a singularity

problem, and can cause parameter bursts and poor performance of the controller.

Diagnostic and treatment knowledge for over parameterization can be divided into a

detection stage, and a verification stage. In the detection stage, the ESM makes use

of four rules:

• Classification Rules; R2

• Formal Diagnosis Rules; Rll

• Treatment Rules; R12, R13

The classification rule, R2, for over parameterization looks at the trace of the

covariance matrix and its time difference to decide when over parameterization may

be present. Formal diagnosis rule, Rll, uses an internal function called

"repeated roots" to analyze model estimates for common roots, (our criterion for

over parameterization). Treatment rules R12 and R13, activate an estimator

reinitialization algorithm "Reinitialize", and in some cases a control law swapping

algorithm called "change control". If over parameterization is detected, the side

122

effects of the treatment rules trigger the verification stage. In this stage, the

reformulated model parameterization is compared to the original model to see which

is actually the best model. The rules that manage the verification process are given

as follows:

• ClassificationRules; R25

• Formal Diagnosis Rules; R26,R28

• Treatment Rules; R27, R29

In this case the classification rule is fired by the convergence of the new model

formulation, (NM), and produces two hypothesis that drive the verification process,

"nm better than pbm", (i.e. new model better than present best model), and "nm

worse than pbm", (i.e. new model worse than present best model). The formal

pbm mc , to checkdiagnosis rules use two Akalke testfunctions,"nm_.aic" and " _ " "

on the verificationhypothesis generated by rule R25. Finally, the treatment rules

R27 and R29 adopt the model with the lowest Akaike index as the present best

model, and clean up any side effectscaused by over parameterization checks. We

note that any set of rules that leads to re-parameterization of the plant model will

trigger these rules as well.

In_,f_icientEzdtation.'.Insufficientexcitationis another example of a problem that

causes singularitiesand the associated parameter burst phenomenon. The problem

name used by the ralebase to describe this condition is "low excitation",and the

associated rules are:

123

• Classification Rules; R2

• Formal Diagnosis Rules; R14

• Treatment Rules; R15, R16

As in the case of over parameterization checks, the classification rule for low

excitation monitors the trace of the covariance matrix and its time difference.

Formal diagnosis depends on the use of an external function called "inputtest"

that performs the plant input auto-correlation test that we described in section

2.1.2. Treatment rule R15 checks for saturation, and in the case where saturation is

low, an external function called "addexdtation" is activated to add a dither signal

to the plant. In the case of high saturation, R16 activates an external function

called "reg", which regularizes the eovariance matrix, and "forget" which is used to

raise the forgetting factor and prevent parameter burst problems.

Deterministic Disturbances: As described in chapter 2, deterministic disturbances

can cause high prediction errors and bad transient response of the estimator when

they are modelled along with the plant dynamics. In the present formulation of the

rules, deterministic disturbance cheeks are performed using the repeated_roots

function during diagnosis of over parametefization, (R2,R11,R12,R13), diagnosis of

plant/controller incompatibilities, (R43,R44,R45), and during treatments that

involve control law switching, (R33, R34). Basically whenever the repeated_roots

function finds common roots in the plant model that are on the unit circle, it

assumes that they represent deterministic disturbances. Filters composed of these

roots can then be used to allow shortening of the plant model and the design of

controllers that reject the disturbances. At this point there are no rules used

L

124

exclusively to detect deterministic disturbances.

Bad Initial Conditions: Of the two types of problems that bad initialconditions can

cause, local minima and unstable predictor forms, the rulebase presently contains

only information on how to respond to initialconditions that lead to unstable

predictor forms. This form of the initialcondition induced problem is detected by

saturation of the parameter projectionalgorithm, and is referred to as a "projection

algorithm saturation" problem.

• ClassificationRules; R4

• Formal Diagnosis Rules; R21

• Treatment Rules; R22

The classificationrule R4 forms the hypothesis "projection algorithm saturation "

when the new model estimates have high prediction errors. Confirmation of this

hypothesis is made by checking the projection algorithm saturation index with

formal diagnosis rule,R21. If the hypothesis is true, the treatment rule 1122 uses

the reinitializeprocedure to start the estimation process over again with new initial

parameters.

Zero Coe[_dent.s: In many cases,an error in the model order or the delay of the

plant can lead to the presence of model parameters whose values are dose to zero.

This condition can be a problem with some control algorithms, and forces the

estimation algorithm to estimate extra parameters. The rulebase contains three

rules that detect the zero coefficientcondition,and reformulate the plant model if

necessary:

m

125

• Classification Rules; R8

• Formal Diagnosis Rules; R9

• Treatment Rules; RI0

The problem hypothesis "zero coefficients present" is generated by R4 once the

trace of the covariance matrix is small enough, (i.e. once the confidence in the

estimates is high). During formal diagnosis R0 removes leading and trailing zero's

in the model coefficients from the model using an internal function called

"zero_test'. If zerotest makes any changes to the model, the treatment rules RI0

reinitiatizes the estimator with the new model formulation. As in the case of over

parametefization, any model structure changes made by these rules will trigger the

verification process given by rules P,.25 - R29.

Numerical Problems: The only intervention that the ESM can take on numerical

problems is to readjust the scaling of the data according to the knowledge on scaling

procedures in the rulebase:

• Classification Rules; R4

• Formal Diagnosis Rules; R17, R18

• Treatment Rules; R19, R20

The hypothesis related to numerical problems are triggered by high error and are

given as follows; "scaling is low" and "scaling is high". When scal/ng problems are

detected the external function called "scaler" can be used to adjust the scaling of

the measurement vector, _o, so that the effect of numerical inaccurades can be

126

r_u_d.

Plant Changes.: Plants with dynamics that change gradually or in steps, may

require the system to raise or lower forgetting factors,or totally reiuitiaiizethe

estimator. Rules for managing thisprocess are given by:

• ClassificationRules; R3, R4

• Formal Diagnosis Rules; Rg, R23

• Treatment Rules; R24, R6

The rules R3, RS, and R6, use the prediction error variance and the trace of the

covariance to decide if the forgetting factor is too high, (i.e. "ff too high"), and if so

uses a forgetting factor adjustment function, called "forget" to lower it. This set of

rules was designed to handle gradually changing plant dynamics. In the case of

plants with rapidly changing dynamics, rules R4,R23 and R24 are used to establish

the hypothesis "system change", and reinitialize the parameter estimator.

At this point, we have reviewed the knowledge contained in the rulebase that

pertains to estimation problems. In the next set of discussions, we describe the

control algorithm knowledge that the ESM uses to monitor and adjust the control

algorithms that it supervises. The expert system module has four different control

algorithms at its disposal, (d-step ahead, model reference, pole placement, internal

model principle controllers), plus an open loop training mode. When a problem

occurs with a particular control algorithm, the system may decide that one of the

other control modes is better suited to the present conditions. The knowledge used

to manage the application of control algorithms is contained in three problem

127

categories in the rulebase; plant/controller incompatibilities, controller wind up

problems, and poor plant modelling, (i.e. poor training of the controller).

Plant/Controller Incompatibilities: In some cases the character of the plant

dynamics makes it impossible to use a certain type of control law. As described in

chapter 2, minimum variance controllers like the d-step ahead controller and the

model reference controller cannot be used to control a non minimum phase plant.

In addition, pole placement controllers cannot be used to control non co-prime

plants. The rulebase contains two sets of plant/controller incompatibility rules.

One set of rules determines when the plant is non minimum phase for d-step ahead

controllers and model reference controllers, and the other to detect when the plant is

not co-prime and the controller is based on a pole placement design. The set of

rules dealing with non minimum phase plants with minimum variance controllers is

considered first:

• Classification Rules; R30

• Formal Diagnosis Rules; R31

• Treatment Rules; R32, 1t33, R34

The hypothesis "plant is non_min_.phase", (i.e. plant is non minimum phase), is

formed when the classification rule R30 is activated by high controller saturation

levels. An internal function called "non_nfin_phase_test" is used by 1t31 in the

formal diagnosis stage to determine whether the plant is minimum phase. If the

plant is non minimum phase, the control law is changed to a pole placement

128

controller or an internal model principle controller using the "changecontrol"

function, (R32-R34).

The other set of plant/controller incompatibility rules checks that the plant

remains c@-prime, (i.e.no common roots between A(q -I) and B(q -I) polynomials),

when a pole placement styleof controllerisin use.

• Classification Rules; R43

• Formal Diagnosis Rules; R44

• Treatment Rules; R45,R46

In this case, the hypothesis generated by the classification rule R45 is "repeated

roots in ab". The formal diagnosis rule, R44, uses the repeated__roots function

described above to look for common roots in the A(q -1) and B(q -1) polynomials.

When common roots do arise, the treatment rules changes the control algorithm to

an internal model principle controller and reinitializes the parameter estimator.

Controller Wind Up: Controller wind up problems occur when marginally stable

roots are present in the denominator of the feedback filter. Due to control law

selectionpoliciesthat the ESM uses,wind up isprimarily a problem experienced by

the internal model principlestylecontroller. The rules used to diagnose and treat

the problem are given as follows:

• ClassificationRules;R47

• Formal Diagnosis Rules;R48

• Treatment Rules; R49

129

The hypothesis "wind up problem" is generated when an internal model principle

controller is in use and the controller is highly saturated. Diagnosis of wind up

problems makes use of an internal function called "f__poly check t', which returns

"t" if the feedback polynomial, F(q-1), contains marginally stable roots, and nil

otherwise. If the wind up hypothesis is true, the treatment rule R49 prescribes the

external function "cont._proj". Cont___proj projects all of the unstable roots of the

F(q -1) polynomial back into the unit circle, and allows the controller wind up

condition to decay.

Poor ModeUing: In some cases, estimates of the plant model parameters are not

accurate enough to provide good controller performance. In these circumstances,

the expert system module may elect to use an open loop training mode to improve

the parameter estimates and in turn improve the quality of the controller

performance. The rulebase has two sets of rules to manage the open loop training

sequence; one set of rules to decide when open loop training is needed, and another

set to decide when to re-establish dosed loop control. The set of rules that

determine open loop training is needed are given as follows:

• Classification Rules; R35,

• Formal Diagnosis Rules; R36, R37,1LS0

• Treatment Rules; R38

When saturation is high, R35 produces the hypothesis "training needed".

Depending on the type of controller in use, the formal diagnosis rules conclude

training is needed when saturation is high and model errors or output/setpoint

130

deviations are high, (R36,R37). If an internal model principle controller is in use,

wind up checks are performed before concluding that an open loop training sequence

is needed. Once the hypothesis "training needed" is considered as true, treatment

proceeds by changing the control to the open loop mode using the function

change.control.

The set of rules that decide when to revert to a closed loop control mode are

given as follows:

• Classification Rules; R39

• Formal Diagnosis Rules; R40

• Treatment Rules; R41, R42

Once modelling error is low and steady, the system changes the control algorithm

back to a pole placement controller or an internal model principle controller using

the change control function.

In this section we have reviewed the kinds of rules used to drive the

diagnostic and treatment process, and presented an over view of the organization of

knowledge in the rulebase. In addition, we provided a listing of rule numbers

associated with each specific problem area. No detailed explanation of how the rules

were formulated, or about the internal and external functions that the rules

referenced were given. In the next section, 4.3, we step through this process in

detail, showing how the complete knowledge engineering task is done for the

problem of over parameterization. This example represents the translation of the

d/agnostic and treatment knowledge we described in english in chapter 2, into the

language and constructs that the expert system module uses.

131

4.3 Knowledge Engineering for Over Parameterization Problems

The purpose of this section is to step through the process of knowledge

engineering for the diagnosis and treatment of over parameterization problems. We

begin with a brief review of the techniques described in chapter 2 for detection and

of over parameterization, and possible corrective actions. Following the review, we

proceed to translate this information into a rules based representation. In addition

to rule formulations we also describe the internal and external procedures referenced

by the rules, as well as the procedure library entries for a given external function.

In summary, this example is meant to show just what the process is by which

information for a particular problem is incorporated into the expert system module.

In section 2.1.2, we showed that when all of the polynomials of the estimated

plant model are over parameterized, the covariance matrix, P, can move towards

singularity, causing a phenomenon known as a parameter burst. The diagnosis and

treatment of over parameterization takes place in two phases, detection and

verification. In the detection stage, the trace of the covariance matrix is monitored,

and a high value or increasing value for the trace is considered as a sign of

singularity problems, and possibly over parameterization. If over parameterization

is suspected, the root locations of the estimated model polynomials are checked for

common roots. When common roots are found, and those roots are within the unit

circle, over parameterization is assumed to be true and a new model is formulated

with the common roots removed. In the final step of the detection stage, the

parameter estimation algorithm is reinitialized with the parameters of the new

model.

132

The verification stage begins once tie parameters of the new model have

fully converged. The purpose of the verification stage is to make sure that the new

model provides an adequate representation of the plant's dynamics when compared

to the original model. Verification is carried out by calculating the Akaike

information index for each model over a given time interval, and then comparing

the resulting the best model.

The translation of this information into a rulebased format generates two

sets of rules, over parameterization detection rules, and verification rules. The first

set of rules, detection rules, deal with the formulation of the over parameterization

hypothesis and the subsequent model analysis tasks described in chapter 2. If the

detection rules determine that over parameterization is present, a factored version

of the plant model is calculated and the resulting model is stored in the "NM", (i.e.

new model), slot of the model frame. The second set of rules manages the

verification process, waiting for convergence of the new model, and coordinating the

results of the Akaike tests that need to be run. In the following discussions, we

consider the detection rules first and then go on to describe the verification rules.

In each case, the rules are fit into the classification, diagnosis and treatment format

used in section 4.2, and procedures referenced in the rules are detailed.

As explained above, the purpose of the detection rules is to examine the

possibility that over parameterization exists, and to formulate a new model if

analysis of the model indicates that this is the case. The first part of the detection

process is performed by the classification rule R2:

m

133

(IF

(THE

where

NOT (REINIT_USED))

GT (GET_VALUE DELP) (NEG TH_P_2))

GT (GET_VALUEP) TH P i))

'PRO B LEM_HYP OTHESIS(O VER P A RAMETERIZ A TI O N))

_PROBLEM_HYPOTHESIS(LOW EXCITATION))))

"not" is an internal function defined such that (not t) -_ nil
and (not nil) -, t

"get_value" is an internal function that returns the value of
its argument based on information from the factbase

"gt" is an internal function that performs the greater-than
operation

"Leg" is an internal function that performs a negation operation
on its argument, (Leg 1.) -_ -1.

"p" denotes the normalized trace of the covariance matrix

"th__p_l" is a threshold on value of the normalized trace of the
covariance matrix, and has a value of .01

"delp" is the normalized trace of the covariance matrix difference
over one ESSI

"th__p_2" is a threshold on the value of the difference in the
trace of the covariance matrix, and has a value of .005

Basically, the rule says that if the estimation algorithm was not rein.itialized at the

last ESSI, the the P matrix is large, and either steady or increasing, there is the

possibility of over parameterization or low excitation.

Rule 2 performs the task of generating

parameterization of the plant mode/ is present.

parameterization is provided by rule number e/even:

the hypothesis that over

Formal diagnosis of over

(RII IF (REPEATED ROOTS))

THEN COVER PA--RAMETERIZATION)))

134

Repeated__roots is an internal function that analyzes the root locations of the model

estimates and returns "t" if it finds common roots among the polynomials of the

model. In the case of common roots within the unit circle, the repeated roots

function creates a factored form of the plant model, and places that model in the

NM slot of the model frame. If no common roots are found, the function returns nil,

and the over parameterization hypothesis is taken as false.

The treatment rule used when over parametefization is proven by rule

eleven, causes the parameter estimator to be reinitialized with the model that

repeated_roots creates during the diagnosis process:

(RI3 (IF (OVER PARAMETERIZATION)

(THEN (REINITIALIZE NM)))

The reinitialize function referenced in this rule is an external procedure, that when

modified by the directive, "NM", tells the parameter estimator to reinitialize itself

with the parameter values in the NM slot of the model frame, and a P matrix of the

appropriate dimension. In summary, we see that if the "detection rules", actually

find evidence of over parametefization, a new model is introduced into the adaptive

controller environment for estimation and control.

Before moving on to discuss the verification rules, we note that the

knowledge engineering for over parametefization detection also includes the coding

of external procedure characteristics into the procedure library. Recall from chapter

3 that every external function must be included in the procedure library so that the

ESM can properly schedule the functions. In the case of the reinitialize procedure

with the directive NM, the entries of the procedure library are given as follows:

Q

135

(REINITIALIZE (NM THETA, P)
NIL)

END TIME = 1)
*RESULT VALIDITY- 1)))

The first and second slot of the procedure library entry establish the procedure

directive pair that the remaining information of the entry refers to. The third slot

is the "controlled variable slot", and shows that the "REINITIALIZE NM"

procedure/directive pair directly manipulates the parameter vector, theta, and the

covariance matrix, P, in the adaptive controller environment. The next slot is the

precondition slot for using the reinitialize function. In the present version of the

ESM, there are no preconditions listed in the procedure library. The next two slots

correspond to the execution time of the REINITIALIZE NM function and the

validity time of its results. We note that the REINITIALIZE procedure returns the

result "REINIT_USED" after the reinitialization process is complete.

The verification stage of over parameterization checks begins when the

parameters of the new model converge. Once convergence occurs the classification

rule, 1t25, will fire, creating two complementary hypothesis:

where

(1t25 (IF (THERE EXISTS NM)

(LT .(MA'G (GET__VALUE DEL_THET)) TH W 1)
(LT(GET VALUEP) TH P 1)

. (LT (GET VALUE DELP) TH" P 2)))
(THEN (PROBLEM HYPOTHESIS

--(NM BETTER THAN PBM))
(PROBLEM HYPOTHESIS

--(NM WORSE THAN PBM))))

"there exists" is an internal function that checks to see

that its argument is present in the model frame

"lt" is an internal function that represents the less-than
function

136

"mag" is an internal function that takes the absolute value
of its argument

"d_ .thet" is the difference in the norm of the parameter
estimate vector over one ESSI

"th__t_l" is a threshold on the change of the parameter vector
norm, and has a value of .05

The rule may be interpreted as saying that if the new model parameter estimates

have converged, the ESM should investigate the which of the models is the best

model.

The formal diagnosis rules for the hypothesis generated by rule 1%25 are given

as follows:

(1%26

(1%28

(IF (LT (GET VALUEP) TH P 1) .
LT(GET--VALUEDELPTHP 2)

ILT (MAG-(-GET VALUE _ELZTH'ET)) TH

(LT (PBM AIC gONE) (NM AIC NONE)))

(THEN (NM WORSE THAN PBM)))

T I)

(IF (LT (GET VALUE P)TH P_I) .
(LT .(GET--VALUEDELP) TH P 2)
(LT(MAG (GET VALUE DEL--THET))TH T I)

. (GT (PBM AIC'NONE) (NM_A'IC NONE)))-- --
(THEN (NM BETTER THANPBM)-))

In this set of rules, we see that two external functions, PBM_AIC and NM_AIC

are used to determine which model is better; i.e. whether or not the

overparameterization hypothesis is true. PBM_AIC is a procedure that calculates

the Akaike information index for the original model, also referred to as the "present

best model". Similarly, NM_AIC calculates the Akaike information index for the

new model parameterization. These functions are both passive, (i.e. they control no

variables directly), and appear in the procedure library as follows:

137

(PBM AIC(NONE ()()

(NM_AIC (NONE ()()

END TIME = 5)
RESULTVALIDITY

END TIME = 5)
RESULT_VALIDITY

=1o)))

= lO)))

The treatment rules associated with the "NM BETTER THAN PBM" and

"NM WORSE THAN PBM" hypothesis are given as follows:

(R27

(R29

(IF (N M BETTER THAN PBM))
(THEN (RE ASSIGN PBM TO NM)))

IF (NM WORSE THAN PBM))THEN (REINSTALL PBM)))

Rule 27 activates an internal function called "RE_ASSIGN" which replaces the

present best model slot in the model frame with the new model formulation, in the

event that the hypothesis "NM BETTER THAN PBM" is proven to be true. No

reinitialization of the parameter estimator is necessary since the parameters of the

new model are already in use by the adaptive controller. When the over

parameterization hypothesis is incorrect and the Akaike tests show that "NM

WORSE THAN PBM", rule 29 is satisfied, and the external function called

"REINSTALL" is activated. Reinstall replaces the new model parameters in the

adaptive controller with the parameters of the original or present best model, which

were stored in the PBM slot of the model frame. In addition, the reinstall function

clears the NM slot of the model frame, signifying that the verification process is

finished.

In the preceding discussions on knowledge engineering issues, we have shown

how the diagnostic and treatment methods introduced in chapter two are converted

138

into a format that the expert system can utilize. In section 4.1, we provide

definitions of the variables that the signal-to--symbol interface calculates from

measurements in the adaptive controner environment. This part of the chapter

constitutes the portion of knowledge engineering that deals with the communication

between the adaptive controller environment and the ESM. In section 4.2, we

concentrated on the organization of knowledge about adaptive control problems in

the rulebase. Specifically, we reviewed the types of rules present and then gave an

outline of problem areas and the rules that applied to those problems. This section

of the chapter serves as a guide for more complete listings of the rules that appear in

the appendix. Finally in section 4.3, we described the 'rule formulations for the

specific problem area of over parameterization. The purpose of this section was to

show how the diagnostic and treatment knowledge from chapter 2 pertaining to over

parameterization was actually fashioned into a rules based format. Other important

aspects of the knowledge engineering process that this example illustrated, were the

definitions of internal and external functions, and the inclusion of procedure

descriptions in the procedure library. At this point all of the machinery of the ESM

and its knowledge content have been presented. In chapter 5, we exercise the

completed expert supervised adaptive controller via a simulation study of the

system applied to force control in an end milling operation. As will be shown, the

knowledge engineering described here allows the ESM to find problems with the

adaptive controller and fix them, resulting in much better performance than an

unsupervised adaptive controller.

CHAPTER 5

CaseStudies

In this chapter, we present the results of a simulation study of the expert

supervised adaptive controller applied to the problem of force control for an end

milling operation. The end miring process provides a good test case for the expert

supervised adaptive controller since implementation problems such as cutter runout

and saturation are common, and the dynamics of the process are complex,

displaying both time varying and non linear characteristics. Through the course of

the simulations we will demonstrate all of the major features of the supervisory

system, showing how the system handles estimation algorithm problems, control

algorithm problems, and their interactions. As will be shown, the time distributed,

interactive diagnostic techniques detailed in chapters 3 and 4, prove to be qu/te

useful for the detection and treatment of problems presented in the simulations.

The discussions that follow are divided into five main sections:

• 5.1 Modelling the Milling Process

• 5.2 InsufficientExcitation

• 5.3 Over Parameterization

• 5.4 Deterministic Disturbance Rejection

• 5.5 Poor Choice of InitialConditions

In section 5.1 we describe the configuration of the force control system for the

milling process, and then present the model that relates cutting forces to the applied

control signal. The purpose of section 5.1 is to provide a physical understanding of

139

140

the force control system as a basis for the specific case studies that appear in the

remaining sections 5.2-5.5. In section 5.2, we examine the case where excitation

problems evolve in the adaptive controller. It will be shown that the supervisory

system reacts to excitation problems differently depending on whether or not

saturation of the controller is present. In section 5.3 two cases of over

parameterization problems are presented; one case where all model polynomials are

over parameter/zed, and one case where the model delay is under estimated. In

both cases, the supervisory system is able to identify the correct model structure

and also make appropriate transitions to other control algorithms. In section 5.4,

three cases are given that show how the system responds to various forms of cutter

runout components in the force measurements. Cutter runout is caused by eccentric

mounting of the cutter, and manifests itself as an uncontrollable periodic

disturbance in the force measurements. In the set of case studies given in section

5.4, cutter runout is modelled as a sinusoidal disturbance with amplitudes of 10

Newtons, 100 Newtons, and then as a 10 Newton sinusoidal disturbance with a

superimposed gaussian noise sequence. In each case, the steps that the system takes

to identify the deterministic component of the runout noise and then compensate for

it are reviewed. Finally in section in 5.5, we consider the force control problems

that occur when the milling model includes stochastic components and a poor choice

of initial conditions has been made for the parameter estimates. In all of the cases

described above, we provide simulations of the milling process where the:

adaptive controller is used without supervision

adaptive controller is used with expert supervision
assuming that the calculation times for the expert
system are instantaneous

141

• adaptive controller is used with expert supervision
assuming a finite calculation time for the expert
system of one expert system sampling interval.

The instantaneous calculation time case represents the ideal case for the supervisory

system, where a schedule of activities can be planned based on data from the

signal-to--symbol interface within the adaptive controller's sampling interval. The

finite calculation time case is meant to represent the more realistic case where the

schedule of supervisory activities is formulated over a period of one expert system

sampling interval, (30 adaptive controller sampling intervals). We note that even in

the case where expert intervention is delayed by one ESSI, performance of the force

control system is greatly improved over the case where adaptive control is used

without supervision.

5.1 Modelling the Milling Process

In this section, we describe the cutting force controller used as the basis of

the simulations given in sections 5.2-5.5. The cutting force controller follows from

the work Lauderbaugh performed in the mid 1980's on adaptive force control for

milling, and is shown in Figure 5.1. Basically, the controller manipulates the

feedrate of the workpiece to maintain the cutting force at a desired level. In the

discussions that follow, we begin with a description of the hardware features of the

controller and provide a qualitative explanation of how the force controller works.

In addition, we present the model of the dynamics that Lauderbaugh developed to

relate the resultant cutting force on the milling cutter to the control voltage apphed

to the feedrate override circuit of the milling machine. It will be shown that the

milling process as modelled for the simulation studies in 5.2-5.5, includes time

142

Dynamometer

1
Anti-Aliasing

Filter

Analog-to-Digital
Convener

Control Computer

Digital-to-Analog
Converter

CNC Milling
Machine

t Cutting Forces

Figure 5.1 Cutting Force Control System

143

varying dynamics, and non linear dynamics as well as controller saturation.

The cutting force control system that Lauderbaugh developed is shown in

Figure 5.1, and consists of six main parts; a CNC milling machine, a dynamometer,

an anti-aliasing filter, A/D converter, a control computer, and a D/A converter.

During operation, forces in the x and y directions are measured by the dynamometer

and low pass filtered to avoid aliasing problems. Following the filtering operation,

the forces are combined into a resultant force, F R , as follows:

FR -" J F_x + F2y (5.1)

where F x is the x--component of the cutting force

Fy is the y--component of the cutting force.

The resultant force is then sampled by the A/D converter and passed to the

control computer. The control computer uses the sampled force values to calculate

a sequence of control voltages which it passes to the feedrate override circuitry of

the milling machine via the D/A converter. The feedrate override voltage is used to

adjust the actual feedrate of the workpiece above or below the programmed feed, fp,

and compensates for deviations of the cutting force from the setpoint. The fee&ate

of the work piece is related to the feedrate override voltage as follows:

f = v(t)
3.92

(s.2)

where V(t) is the feedrateoverride voltage and
issuch that 0 < V(t) < 4.8 Volts

144

f is the workpiece feed in ram/rain

fp is the programmed feed in mm/m/n

Notice that the fee&ate cannot be adjusted completdy arbitrarily. Due to the

saturation of the fee&ate override voltage, the controller can only obtain fee&ates

between 0 and 125% of the programmed fee&ate, fp.

Having described the physical components of the controller, we now go on to

present the mathematical model of the dynamics of the milling process that was

used as the basis of the simulations. The model was developed by Lauderbaugh as

part of his work for adaptive force control, and relates the behavior of the cutting

force to the fee&ate override voltage:

FR(t) + 2_a_nFR(t) + aj2FR(t) - (Ksaa K_ e)_n2 Va(t) (s.3)

where
K s isthe specificcuttingforcein (Newtons/ram/tooth)

Kf isthe gain between the controlvoltage and the feed

rate in m_m/tooth; equivalent to:

Kf =

N

N T

a

fp 1 1

3.92 N N T

isthe spindle speed in rev/min

isthe number of teeth on the cutter

is the depth of cut in mm

is an emperical constant equivalent to 1.4

145

a is an empirical constant equivalent to .73

V is the control voltage, (feedrate override voltage)

wn is the natural frequency and has a value of 3 rads/sec

(is the damping ratio, and varies with the depth of cut
according to the relation:

(= .4*a - .65

Notice that in addition to the nonlinear relationship between the control signal and

the cutting forces, there are significant variations in the dynamics due to the depth

of cut, a, as well as through cutting conditions such as the spindle speed, N, and the

specific cutting force K s . In the simulations that follow, we include examples where

the dynamics of the cutting process are changed through the effect of the depth of

cut. The other cutting conditions are taken as constants, and are summarized as

follows:

N = 550 rev/min

N T- 4 teeth

fp= 50.8 ram/rain

Ks= 2500 Newtons/mm/tooth

Furthermore, the sampling interval for all of the controllers in the simulations was

chosen as .05 seconds, the expert system sampling interval is 1.5 seconds, and the

setpoint is constant at 575 Newtons.

5.2 Insufficient Excitation Case Study

The purpose of this case is to show how the expert supervisory system

handles excitation problems caused by either saturation of the control signal or by

146

settling of cutting forces to a steady value. The simulation begins with a depth of

cut of 2mm, and then changes to a depth of cut of 3ram at a time of 30 seconds.

During the time that the depth of cut is 2ram, the gain of the cutting dynamics is

such that the controller saturates at the 4.8 Volt limit and excitation problems

develop. After the change in the depth of cut at 30 seconds to 3ram, the gain of the

cutting process increases and the controller is able to drive the cutting forces to the

desired setpoint. Once the setpoint is reached however, excitation problems emerge

as before, creating the potential for parameter bursts and poor controller

performance. In the discussions that follow, we present the results of three

simulations that correspond to the unsupervised case, the expert system supervised

case with calculation times modelled as instantaneous, and the expert system

supervised case with a finite calculation time of one expert system sampling

interval, (ESSI). We begin the discussions with a listing of the initial conditions on

the adaptive controller, and the estimation algorithm, and go on to describe each of

the simulations in turn.

In the case where the expert system is assumed to operate instantaneously,

(i.e. within one adaptive controller sampling interval), a transcript of the expert

system actions is provided which shows how the supervisor diagnosis and treats the

excitation problems that develop over time. It will be shown that the supervised

versions of the adaptive controllers are able to avoid parameter burst phenomenon

and associated force overshoots that occur in the unsupervised adaptive controller

during the transition in the depth of cut that takes place at 30 seconds. In addition,

the simulations also illustrate how the supervisory system treats excitation problems

in the different contexts of saturated and unsaturated controller operation.

w

147

Cutting conditions for the simulations and initialconditions on the adaptive

controllerfor these cases are given as follows:

Cutting Conditions:

depth of cut

FR(0)

= 3ram from 0 _<t < 30 seconds

= 2ram from 30 < t < 60 seconds

= 475. Newtons

= 0.0 Newtous]sec

Adaptive Controller Conditions:

na= 2

nb-- 1

d-1

nc - 0

0(0) = (-2.,i.,1.,1.) T

P(-1) = I000"I

A = .95

Control Law: Pole Placement with dosed loop characteristic equation

specified by: T(q -1) - 1 + .Sq -1

In the unsupervised case, the controller is saturated at the 4.8 Volt level

while the depth of cut is set at 2ram. The controller saturation coupled with a

forgetting factor less than one causes the dements of the covariance matrix to

increase. When the depth of cut changes at 30 seconds to 3mm, the prediction error

148

in the estimated model increases and the parameter estimates experience the burst

phenomenon. The cutting force is strongly affected by the parameter burst and

reaches a value of almost 900 Newtons before settling to the setpoint of 575 Newtons

approximately 32 seconds into the simulation, (see Figure 5.2).

In the two cases where expert supervision is used in conjunction with the

adaptive controller, the expert system is able to compensate for low excitation and

avoid the associated problems of parameter bursts and poor controller performance,

(see Figures 5.3 and 5.4). When the when the control signal is saturated, (0-30

seconds of the simulation), the supervisory system cannot add excitation to the

control signal. Instead, the supervisor combats the effects of low excitation by

raising the forgetting factor to a value of one, and using a regularization algorithm.

After the change in depth of cut at 30 seconds, the supervisor is able to avoid

excitation problems by adding a gaussian noise sequence to the reference input of

the controller using the ADDEXCITATION REF procedure since the controller is

no longer saturated.

In the case where the calculation time of the expert supervisory system is

taken as one expert system sampling interval, (1.5 seconds), the response of the

cutting force is slightly different than for the instantaneous calculation time case.

Transients in the cutting force due to the depth of cut change at 30 seconds are

smaller, and excitation packets are added at different times. In addition the finite

calculation time supervisor initiates an excitation addition action near the end of

the simulation that is not present in the instantaneous calculation time case. In

both cases however, excitation problems are detected and treated in a manner that

is sensitive to the context that the controller operates in; saturated or unsaturated.

We note that depending on the application, additional treatment contexts could be

149

o

qJ

re]
(D
U

O

1000

900

8(30

700

600

500

4O0

300

200
i

0
0

i I

lo 2_ 3'0 4o ;o 60

Time (Seconds)

Figure 5.2 Force vs. Time; Low Excitation Case,
with no Expert System Supervision

150

o

Z

8

IzI
7OO

3OO

2OO

lO0

0
0 1'o 2_

V-'_'_ '_t"--"

I

3'0 _ _

Time (Seconds)

Figure 5.3 Force vs.Time; Low Excitation Case,

Instantaneous Expert System Supervision

151

o

Z

¢9

O
g_

I000

9OO

8OO

7OO

6OO

5OO

4OO

2{X)

2OO

tO0

0
0 ,'o _ io _ ;o _o

Time (Seconds)

Figure 5.4 Force vs. Time; Low Excitation Case,
Finite Calculation Time Expert Supervision

152

included in the supervisor to ensure safe performance of the controller.

5.3 Over Parameter/zation Case Study

In this section two case studies involving different forms of over

parameterization are considered. In the first case the orders of the A(q -1) and the

B(q -'1) polynomials of the model of the cutting forces, are both over estimated;

singularity of the p-1 matrix, and in the pole placement controller algorithm used

are possible. In the second case, the order of the B(q -1) polynomial is over

estimated and the delay of the model is set too low. As a result, problems develop

in the control algorithm, and setpoint tracking is poor. Both of the cases described

above require the expert supervisory system to change control algorithms, and

conduct experiments to determine the true model structures. It will be shown that

the ability of the supervisory system to perform an interactive style of diagnosis is

necessary for the detection and treatment of over parameterization problems. The

discussions that follow begin with a presentation of the simulation results from the

case where all of the model polynomials are over parameterized and then proceeds to

the case where the cutting model is only partially over parameterized. For each

case study, initial conditions on the adaptive controller are given, followed by

results for the unsupervised adaptive controller, as well as the supervised adaptive

controller, (both the instantaneous, and the finite time calculation time cases).

Complete Over Parameterization: In this example the A(q -1) and B(q -1)

polynomials of the cutting force model are both over parameterized, with each

polynomial containing two extra parameters. As described in chapter 2, this form of

over parameterization can lead to parameter bursts, and to singularity problems in

153

a pole placement adaptive controller. The simulation results that follow, are based

on the cutting conditions given in section 5.1, with a depth of cut that changes from

4mm to 3ram at 10 seconds, and then stays at 3ram until the end of the simulation

at 30 seconds. Results from the unsupervised adaptive controller are shown first,

followed by an explanation of the supervised cases. A transcript of the actions of

the expert supervisor is given in table 5.1 for the simulation where calculation times

are modelled as instantaneous. We note that in the instantaneous calculation time

example, determination of the correct model structure occurs earlier in the

simulation than for the finite calculation time case.

Initial conditions on the adaptive controller and for the cutting forces are

given as follows:

Cutting Conditions:

depth of cut = 4mm for 0 _. t < 10 seconds

= 3ram for 10 _<t < 30 seconds

FR(0) = 0.0 Newtons

FR(0) = 0.0 Newtons/sec

Initial Conditions for the Adaptive Controller:

na= 4

nb =3

d--1

nc-0

0(0)- (-2.,2.,-2.,1.,1.,1.,1.1,)T

A -- .98

154

P(-1) = 1000"I

Control Law: Pole Placement Controller;T(q -I) = i. + .Sq-I

When no supervision is provided, the adaptive controller behaves fairly well

until the depth of cut change at 10 seconds. At this time inflation of the P-matrix

due to over parameterization produces large errors in the model and tracking of the

setpoint is poor, (see Figure 5.5). In addition, because the model is over

parametefized, common roots appear between the A(q "-1) and B(q --1) polynomials,

and the pole placement controller equations approach singularity. As a result,

cutting forces do not reach the setpoint, and instead, continue to oscillate.

When the instantaneous version of the expert supervision system is used in

conjunction with the adaptive controller, common roots are found in the A(q -1) and

the B(q -1) polynomials at a time of 10.5 seconds, (see Table 5.1). The roots are

found to lie within the unit circle, so the supervisor concludes that the model is over

parameterized and factors the common roots out of the model. Once this is done,

the supervisory system instantiatesthe new model slot,"NM", of the model frame

with the factored model and reinitializesthe estimator with the new parameters

and the new set of model orders. After convergence of the model, the expert system

performs an akaike testto compare the new model with the originalmodel. Upon

completion of the test,the supervisor adopts the new model as the present best

model of the cutting dynamics and discards the originalmodel. The resultis that

the cutting forces are able to track the setpoint with no further oscillations(see

Figure 5.6).

155

O

Q3
2:

¢Q

8

800

TOO

600

5OO

40O

3OO

20O

IOO

0
0

t

5 1'o l_ _ /5 3o

Time (Seconds)

Figure 5.5 Force vs. Time; Complete Over Para.meterizatioa
Case, with no Supervision

156

Q

Z

¢O
1.4
o

80O

7O0

600

50O

400

3OO

2OO

10O

0
0

Time (Seconds)

Figure 5.6 Force vs. Time; Complete Over Parameterization

Case, Instantaneous Supervision

157

Q

_J

QJ
U

O

8OO

6OO

50O

4OO

3O0

2OO

loo

O'
0 10 15 20 25 30

Time (Seconds)

Figure 5.7 Force vs. Time; Complete Over Parameterization
Case,Finite Calculation Time Supervision

158

Table 5.1 Complete Over Parametefization Case

Time (seconds)

0 - 6.0

6.0 - 7.5

7.5 --10.5

10.5 -- 13.5

13.5 --21.0

21.0 - 30.0

Description

No problems detected by the Supervisory system

P-matrix is high and no longer decreasing; low
excitation or over parameterization possible. Tests
for over parametefization negative, run inputtest
to check for low excitation.
Actions: INPUT TEST NONE

Inputtest executes, no excitation problems present.
P-matrix growing, over parametefization test reveals
common roots in model; formulate shortened version of
the model
Actions: REINITIALIZE NM

Parameters of the new model converge; run akaike
tests to check model adequacy
Actions: PBM AIC NONE

NM _IC NONE

New model better than the original model, replace
the original model with the new model

No new problems

In the finite calculation time case, the expert supervisor is unable to detect

common roots before the depth of cut change 10 seconds into the simulation triggers

high amplitude oscillations in the cutting forces, (see Figure 5.7). At this point, the

covariance matrix is large, prediction errors of the estimated cutting model are high

and increasing, and the control signal is highly saturated. In accordance with rule

number B.36 the supervisory system decides to initiate an open loop training

sequence starting at 13.5 seconds. At 15 seconds, prediction errors have decreased

significantly and pole placement adaptive control is restarted at 16.5 seconds. As

Figure 5.7 shows, poor performance is obtained when closed loop control is

m

159

rdnstalled. At 22.5 seconds the expert supervisor detects that the pole placement

equations are close to singular using the "sylv det" feature variable described in

chapter 4, and discovers that the cause is a set of common roots in the A(q -1) and

B(q -1) polynomials. As in the instantaneous case, the supervisor determines that

over parameterization is present and responds by formulating and testing a smaller

version of the cutting force model. Once the new model is in place at 24 seconds,

cutting forces settle to the required setpoint without further oscillations.

Partial Over Parameterization In this case where an extra delay is included in the

simulation of the cutting dynamics so that the actual set of model orders is given

by:

ha=2 nb=l d=2

The model structure assumed for the adaptive controller is initially incorrect, and

uses the following set of model orders:

na=2 nb=2 d=l

Because the model is only partially over parameterized, (the B(q -1) polynomial is

too large), the inflation of the covariance matrix that we observed in the last case

study will not occur. Instead, as the parameter estimates converge, and the leading

coefficient of the estimated B(q -1) polynomial approaches zero, problems occur in

the control algorithm. In the discussions that follow, we begin with the

unsupervised adaptive controller, showing how partial over parameterization leads

to controller problems and bad cutting force characteristics. Next we consider two

cases of supervised adaptive control, one with instantaneous calculation times, and

160

the other with finite calculation times for the expert system. In both cases, the

supervisor is able to resolve controller problems and identify the correct structure

for the cutting force model.

Conditions on the cutting force simulation and initial conditions on the

adaptive controller for these cases are given as follows:

Cutting Conditions:

depth of cut - 3ram with no changes

FR(0) = 0 Newtons

FR(0) = 0 Newtons/sec

Adaptive Controller Conditions:

na=2

nb=2

d=l

no= 0

_0) - (-2.,1.,1.,1.,1.) T

A = .98

P(-1) = 100O*I

Controller Type: d-step ahead controller

In the unsupervised case, Figure 5.8, the under estimated delay coupled with

the over estimated order of the B(q "-1) polynomial causes the "b o" parameter of the

model to move towards zero. The estimated model of the cutting force process

161

0

Z

QJ

0

8OO
I

_OOJ

500

3OO

2O0

lO0

0
0 _'0 _5 2'o _ 3_ 3's 4o ,_

Time (Seconds)

Figure 5.8 Force vs. Time; Partial Over Parameterization
Case, with no Supervision

162

o
.,..v

2:

t-*

o

lOGO

90o

8OO

7OO

5oo

500

3O0

2GO

lO0

0 5 I0

Time (Seconds)

Figure 5.9 Force vs. Time; Partial Over Parameterization
Case, Instantaneous Supervision

163

o

¢IJ
2;

¢J

l:I
7_30

600

500

400

30O

200

1GO

0
0

i t i

i _0 _ 2'0 2_ 3_ 3_ 4_ ,_

Time (Seconds)

Figure 5.10 Force vs. Time; Partial Over Parameterization

Case, Finite Calculation Time Supervision

164

becomes non minimum phase, and the d-step ahead controller based on this model

saturates at 4.8 Volts fifteen seconds into the simulation. Due to the saturation

problem, cutting forces remain close to the 900 Newton level for the remainder of

the simulation.

In the supervised case where calculation times are assumed to be

instantaneous, the expert supervisor is able to detect that the model of the cutting

force dynamics is non minimum phase after the first ESSI, (1.5 seconds). The

supervisory system responds by changing the controller to a pole placement

controller and cutting forces rapidly settle to the 575 Newton setpoint, (see Figure

5.9). In the time period from 6 seconds to 13.5 seconds, and 19.5 seconds to 27

seconds, the supervisor reacts to low excitation using the "ADDEXCITATION

REF" procedure,(see Table 5.2). At 25.5 seconds the parameter estimates converge

and the supervisor is able to determine that the leading parameter of the B(q -1)

polynomial is zero. The superv/sory system reacts by decreas/ng the order of the

B(q -'1) polynomial, increasing the delay to 2, and then reinitializing the estimation

algorithm. As in the case of any model structure changes, the supervisor runs an

akaike test to compare the new model formulation with the original model, once the

new model's parameter estimates converge. At 34.5 seconds, the akaike tests are

complete, and the new model structure is chosen as the present best model of the

cutting dynamics.

Table 5.2 Partial Over Parameterization Case

Time (seconds)

0.0 - 1.5

Description

Minimum phase plant detected;switch to an
alternativecontrollaw.

Actions: CHANGECONTROL PPAC

m

165

1.5 --3.0

3.0 --6.0

6.0 -- 13.5

16.5 -- 19.5

19.5 - 25.5

25.5 - 27.0

27.0 - 34.5

34.5 - 45.0

P-matrix high and non decreasing, test for
low excitation
Actions: INPUT TEST NONE

Inputtest determines low excitation present
no saturation, add a dither signal
Actions: ADD EXCITATION REF

Continue to add excitation, no new problems
Actions: ADD EXCITATION REF

no new problems

P-matrix increasing, check for excitation problems
Actions: INPUT TEST NONE

Inputtest determines excitation is low, add a
dither signal.
Actions: ADDEXCITATION REF

Excitation addition continues, parameters converge

and the b o parameter is found to be close to zero.

Formulate a new model with d = 2, nb = 1, and re-
initialize the parameter estimator.
Actions: ADD EXCITATION REF

REINITIALIZE NM

New model converges, run akaike tests to determine
which is better, the new model or the original model
Actions PBM AIC NONE

NM AIC NONE

Akaike tests finish running, results show that new
model is better than original model. Replace or-
iginal model with the new model.

No new problems

In the finite calculation time supervision case, identification of the correct

model structure occurs much earlier than in the instantaneous calculation time case,

(see Figure 5.10). The reason is that the switch to pole placement adaptive control

occurs at 3 seconds, not at 1.5 seconds as in the instantaneous calculation time case.

As a result, the cutting forces are disturbed for a longer time period than in

166

the instantaneous supervision case, and parameter estimates converge 3.0 seconds

into the simulation, allowing the supervision system to detect the model structure

error. Once the model structure error is detected, the supervisory system

reinitializes the estimation algorithm with the corrected model structure, waits for

convergence, and then performs model verification tests. Notice that because the

correct form of the cutting force model is determined earlier in the simulation than

for the instantaneous calculation time case, excitation problems that developed in

the instantaneous calculation time case are not present in this case.

At this point we have presented two sets of simulations corresponding to

complete over parameterization and partial over parameterization of the cutting

force model. Probably the most important feature of these examples was that the

idea of a time distributed interactive diagnosis and treatment process is used

extensively in order to detect and treat over parameterization problems. In both

sets of simulations we see that the expert supervisory system makes an initial

diagnosis of over parameterization, followed by a re-formulation of the cutting force

model. Estimates of the parameters of the new model are allowed to converge, and

then the expert supervisory system initiates verification tests based on the akaike

information criterion to check on the adequacy of the new model. The process by

which over parameterization is detected by the supervisory system may be likened

to an experiment where the supervisory system changes the cutting force model and

then waits for the response of the adaptive controller to confirm its hypothesis. The

ability to decide what procedures must be run in the adaptive controller

environment, in addition to the ability to plan when the procedures must be run,

are essential for this type of of experimentation based diagnosis. We conclude by

pointing out that although simple one step diagnostics may be applicable to

167

problems like low excitation, diagnosis of problems like over parameterization

naturally involves several steps, and requires the time based supervisory functions

provided in our system; simple event-driven supervision functions prevalent in the

literature are not adequate. In the next section, 5.4, the supervisory system will be

applied to the problem of deterministic disturbance detection and rejection. As in

the case of over parameterization problems, it will be shown that the interactive

diagnostic paradigm we use correctly identifies disturbances and improves controller

performance.

b

5.4 Deterministic Disturbances

In the following set of simulations, "cutter runout" is included in the model

of the cutting dynamics by adding various forms of uncontrollable force signals to

the force output of the simulated milling process. Three forms of runout models are

examined here. In the first case, runout is modelled as a 5 hz sinusoidal disturbance

with a 10 Newton amplitude. In the second case, the runout model is also a 5 hz

sinusoidal signal, however, the amplitude is set to 100 Newtons. Finally we consider

a case where the 10 Newton amplitude, 5 hz sinusoidal runout model is combined

with a unity variance white noise sequence. The purpose of this set of simulations is

to show how the set. of supervisory system is able to isolate deterministic

disturbances, such as the runout noise, and use this information to reject the effects

of the disturbance. We begin with a presentation of the simulation results for the 5

tin, 10 Newton amplitude, sinusoidal runout model, when the adaptive controller is

unsupervised and supervised. As will be shown, supervision allows the adaptive

controller to achieve much better performance than is possible when no supervision

is used. In the simulation of the 100 Newton runout signal, which is considered

m

168

next, performance of the supervised case is not nearly as good as for the 10 Newton

case due to saturation of the control signal. Nonetheless, the supervisory system is

still able to analyze the situation and correctly determine the presence of

deterministic disturbances. Finally, we consider the case where stochastic

components are present in the runout model. In this case, the deterministic

disturbances are also detected, however, due to the more complex cutting force

model, (stochastic components), the disturbance rejection process takes longer than

in the previous two cases described.

10 Newton Sin_oidal Runout: In this case the runout model used is given by a 5 hz

sinnsoidal disturbance with a 10 Newton amplitude. The discrete time

representation of the disturbance for a .05 second sampling interval is given by:

where n(k)

n(k) -- q---1 6(k) (5.4)

l+q -2

is the runout force at discrete time k

6(k) = [1 fork-0

L0 fork _ 0

If the forces due to runout are treated as "measurement noise" on the cutting force

dynamics, then as we showed for the case of a general deterministic disturbance in

section 2.1.3, a model can be constructed that combines the runout and the true

cutting force dynamics:

A(q-1)(1 + q-2)Fp, (k) _- q-1 B(q-1)(1 + q-2)V(k) (5.5)

169

In the discussions that follow_ we present simulation results for the unsupervised

and supervised cases using the set of cutting conditions and initial conditions given

below:

Cutting Conditions:

depth of cut 3ram

FR(0) = 0 Newtons

_'R(0) = 0 Newtons/sec

Adaptive Controller Initial Conditions

na-4

nb =3

d-1

nc=O

$(0) = (-2.,2.,-2.,1.,i.,1.,1.,1.) T

= .98

P(-1) = 1000"I

Control Law: Pole Placement T(q -1) = 1 + .5q -1

With no supervision, the controller is unable to track the setpoint and

oscillates erratically throughout the length of the simulation, (see Figure 5.11). The

problem is due to the evolution of common roots in the cutting force model as

parameters converge. Recall from chapter two, that the pole placement equations

experience singularities when the model of the plant is not coprime.

In the case where the expert supervision system with instantaneous

170

o_

el)

Z

70o

6oo

5oo

4OO

3Oo

Ioo

°o } _

Time (Seconds)

Figure 5.11 Force vs. Time; ION Sinusoidal l%unout
Case, with no Supervision

171

o

Z

70O

5OO

40O

3OO

Iooi

Time (Seconds)

Figure 5.12 Force vs. Time; 10N SinusoidaI Runout
Case, Instantaneous Supervision

172

o

Z

u

700,

6OO

50O

400

30O

I00

°o _ ,'o _s _ _ _o

Time (Seconds)

Figure 5.13 Force vs. Time; 10N Sinusoidal B.unout
Case, Finite Calculation Time Supervision

173

calculation times is used with the adaptive controller, the expert supervisor is able

to detect the emergence of singularity problems in the controller and determines at

4.5 seconds that common roots are present. Furthermore, the roots are on the unit

circle so the expert supervision system decides that the roots represent deterministic

disturbances. At this point, the supervisor factors the roots out of the model, and

uses them as the basis of filters for the data used in the estimation algorithm, (see

section 2.1.2). In addition, the supervisor changes the controller to an internal

model principle style controller so that the sinusoidal disturbance can be canceled

from the cutting forces, (see transcript in Table 5.3). Once the new controller and

model parameterization are installed, the performance of the adaptive controller

improves, (see Figure 5.12), and cutting forces oscillate in a tight bound about the

setpoint. We note that oscillations cannot be totally eliminated due to saturation of

the control signal, and imperfect characterization of the disturbance dynamics.

Table 5.3 10 Newton Sinusoidal Runout Case

Time (seconds)

0.0 - 3.0

3.0 -4.5

4.5 - 6.0

Description

No problems detected, parameters converging

Pole placement equations near singularity,
common roots found on unit circle. System
concludes that deterministic disturbances are present.
Supervisory system factors model, installs filters on
estimation data, and changes the controller.
Actions: REINITIALIZE NM

CHANGE_CONTROL INT_MODEL

After reinitialization, prediction errors high, scaling
of measurement data is poor. Supervisory system uses
scaling algorithm.
Actions: SCALER LOWER

174

6.0 - 7.5

7.5 - 15.0

15.0 - 30.0

Parameter estimates of the new model converge, system

begins akaike tests for model verification.
Actions: PBM AIC NONE

NM "XIC NONE

Akaike tests finish, new model is better than the

original model and replaces it.

no new problems

The results for the finite calculation time case, (see Figure 5.13), are

virtually identical to the instantaneous supervision case except that good

performance is established one ESSI later. As in the instantaneous calculation time

case, cutting forces do not settle completely to the setpoint, due to the effects of

saturation.

I00 NeWtOn Sin_oidal Disturbance: The preceding examples of deterministic

disturbance detection and rejection showed that the expert supervisory system was

able to make appreciable gains in performance. In this case we increase the

amplitude of the runout forces to 100 Newtons, and show that there are limits to

how much the supervisory system can accomplish. Initial conditions are identical to

those used in the simulations of the 10 Newton runout case. Comparing the

unsupervised response, (Fig. 5.14), with the supervised response, (Fig 5.15), we see

that neither case exhibits good performance. The expert supervisory system is

actually able to isolate the roots of the deterministic disturbance and make the

appropriate changes to the model structure and the control algorithm. With runout

of such high magnitude however, saturation of the controller prevents the supervised

version of the adaptive controller from working any better than the unsupervised

version. In situations like this one, where the utility of the supervisory system is

175

7OO

0

¢I)

z

C.)

3OO

IOC

0
0

Time (Seconds)

Figure 5.14 Force vs. Time; IOON Sinusoidal l:tunoutCase,
with no Supervision

176

o
.,J

70O

60O

500

40O

300

o
23 30

Time (Seconds)

Figure 5.15 Force vs. Time; 100N Sinusoidal Runout Case,
Instantaneous Superv/sion

177

questionable as a trouble shooting agent, we point out that the supervisory system

can at least be useful as a problem analysis tool for the adaptive controller.

lq Newton Sinu.soidal Runout with White Noise: In the case where the runout model

used is given by a 5 hz sinusoidal disturbance of 10 Newton ampfitude, with a unity

variance white noise sequence added to it. When the cutter runout is considered

measurement noise on the cutting force, the resulting model of the miring process

may be written:

A(q-1)(1 + q-2)FR(k) = q'-lB(q-1)(1 + q-2)V(k)

C(q-1)(1 + q-2)_k)

where a_k) is a unity variance white noise sequence

(s.s)

In the discussions that follow, simulations of the unsupervised and supervised

adaptive controller cases are described, where cutting conditions and initial

conditions for the adaptive controllerare defined below:

Cutting Conditions:

depth of cut 3mm

FR(0) -- 0 Newtons

FR(0) = 0 Newtons/sec

Adaptive Controller Initial Conditions:

na-- 4

nb = 3

d=l

178

nc=4

= 0.0.,0.0.1T

A = .99

P(-1) = i000"I

Control Law: Pole Placement; T(q -I) = 1 + .5q-1

When the adaptive controller is unsupervised, cutting forces vary

considerably within a bound defined by the 700 Newton - 300 Newton force levels,

(see Fig. 5.16). Although the runout model is very similar to the first case

considered above, (10 Newton sinusoidal disturbance with no superimposed white

noise), the larger number of parameters that are estimated, in addition to the

problems involved in the estimation of stochasticcomponents, prevents this version

of the adaptive controller from performing as well as in the first case.

As in the previous examples, the supervisory system is able to isolate the

disturbances and change controllers to account for the disturbance, (see Fig. 5.17

and Fig 5.18). Unlike the other cases, a fourth order C(q --1) polynomial must be

included in the model to account for the white noise in the runout forces, and as a

result convergence of the parameter estimates takes longer. In addition, detection

of the deterministic requires that the common roots are identified in all three model

polynomials, A(q-1), B(q-1), and C(q-1). Once detection of the deterministic

disturbance is accomplished, the supervisory system is able to modify the cutting

force model, and the control algorithm, resulting in good tracking of the setpoint.

In each of the three examples given above, the supervisory system analyzed

the estimated model for signs of deterministic disturbances in the cutting forces

known as "runout". When runout dynamics were found in the model estimates, the

179

o

Z

70O

60O

5OO

3OO

2OO

I00

O0 I0 2O 30 50 70 80 90

Time (Seconds)

Figure 5.16 Force vs. Time; 10N Sinusoidal R.unout with
White Noise, No Superv/sion

180

o

_J

Z

tm

o
f_

7O0

6O0

$OG

40O

3OO

200 ¸

0
0

I'0 20 30 _ '0 _ 7'0 8'0

Time (Seconds)

Figure 5.17 Force vs. Time; ION Sinusoidal Runout with
White Noise, Instantaneous Supervision

181

o

Z

700

6OO

400

3_

20(

100

0
0 I_3 20 3o _ 5o _ 7o so 9o

Time (Seconds)

Figure 5.18 Force vs. Time; 10N Sinusoidal Runout with

White Noise, Finite Calculation Time Super-
vision

n

182

supervisory system responded by formulating new versions of the cutting force

model, estimation algorithm, and control algorithm, with modifications designed to

reject the affects of the deterministic components of the runout. Model verification

tests were also run to confirm that the analysis of the deterministic runout

disturbances were correct in each case. The process was similar to the diagnostic

procedure that the supervisor performs for the detection of over parameterization,

and depends heavily on the interactive capabilities of the supervisory system. For

each of the different forms of runout forces used in the preceding examples, the

supervisory system was able to correctly identify the deterministic components of

the runout. Furthermore, in the cases where runout was of low amplitude, the

system was able to reduce the effects of the runout on cutting forces significantly.

In the next section, 5.5, an example of initial condition induced problems is given.

Of particular interest in this example is the use of an open loop training sequence to

improve performance by retuning poor parameter estimates.

5.5 Bad Initial Conditions

As described in section 2.1.3, initial conditions on the parameter estimates

have an important effect on the behavior of the adaptive controller when stochastic

components are modelled. In this set of simulations, initial conditions are purposely

chosen to produce bad adaptive controller performance when the cutting force model

includes a second order stochastic component due to white noise in the force

measurements. When the expert supervisory system is used with the adaptive

controller, bad choices of initial conditions can be detected and the supervisory

system can reinitialize the estimation algorithm, eventually achieving good

performance. In the discussions that follow, we begin with a description of the

183

unsupervised adaptive controller case, and then present results from the supervised

cases, (instantaneous and finite calculation time cases).

Cutting conditions for the simulation, and initial conditions on the adaptive

controller are given as follows:

Cutting Conditions:

depth of cut 3mm

FR(O) - 0

= o

Initial Conditions on the Adaptive Controller

na= 2

nb=l

d-1

nc--2

?(0) -- (-2.,i.,2.,2.,--2.74,1.876)T

A = .98

P(-1) -- lO00*I

Control Law: Pole Placement; T(q -I) - 1 + .5q"-I

In the unsupervised case, the projection algorithm used to maintain stability

of the predictor form of the estimated model, saturates and prevents the parameter

estimates from converging to an accurate parameterization of the cutting force

dynamics. Since the control law calculations are based on faulty parameter

estimates, the control voltage saturates at 4.8 Volts and cutting forces settle near

184

0
.,,m

Z

@J

1¢X30

9OO

8OO

7OO

6OO

5O0
i

400

3OO

2OO

I00

0
0 _'o 2_ 30 6 5_ _o

Time (Seconds)

Figure 5.19 Force vs. Time; Bad Initial Condition Case,
with no Superv/sion

185

8oo

!
IOO

I

°o IO 20 30 40 50 60

Time (Seconds)

Figure 5.20 Force vs. Time; Bad In/tial Condition Case,
Instantaneous Superv/sion

186

o

¢D
Z

_n

o

I000

800

7O0

500

l,o 3,o !

4_3 50 ¢X3

Time (Seconds)

Figure 5.21 Force vs.Time; Bad InitialConditionCase
FiniteCalculationTime Supervision

187

the 900 Newton level, (see Fig. 5.19).

In the expert system supervised case, where calculation time is assumed as

instantaneous, the supervisory system responds to the projection algorithm

saturation by reinitializing the estimation algorithm with a new set of parameters

using the "REINITIALIZE C" procedure, (see transcript in Table 5.4). After

reinitialization, parameters converge within a region of parameterizations with

stable predictor forms. Parameter values at this point still are unable to provide

accurate predictions of the cutting forces and control signals based on these

estimates are saturated. At 7.5 seconds a large change in the prediction errors of

the estimated model leads the supervisor to believe that a change in the cutting

dynamics has occurred. In response to the perceived change, the expert system

supervisor resets the covariance matrix using the "REINITIALIZE ALG"

procedure. Prediction errors continue to increase even after the reinitialization step

is taken, and at 9 seconds, the supervisor decides to change the controller to an

open loop training mode. Open loop control continues until 37.5 seconds where

prediction errors become small enough so that the expert supervisory system can

reinstall the pole placement adaptive controller. Once the Pole placement adaptive

controller is in place, the cutting forces settle closely about the 575 Newton

setpoint, (see Fig. 5.20).

Table 5.4 Bad Initial Conditions Case

Time (seconds)

0.0 - 1.5

Description

Projection algorithm on parameter estimates
saturates, supervisor concludes bad initial conditions

on estimation algorithm.
Actions: REINITIALIZE C

SCALER LOWER

188

1.5 - 3.0

7.5 - 9.0

g.o --10.5

10.5 - 37.5

37.5 - 60.0

scalingon forcemeasurements stillneeds adjust-
ment.
Actions: SCALER LOWER

no supervisoryactions taken

Large increasein prediction errorslead the supervisor

to believethat the cutting dynamics have changed.
Supervisory system decides to reset the covariance

matrix to adjust to the supposed change in dynamics.
Actions: REINITIALIZE ALG

Prediction errorsremain high, system decides to

switch to an open---looptrainingmode.

Actions: CHANGECONTROL OPENLOOP

no supervisory actionstaken

Open-loop training continues, and prediction errors
decrease to acceptable levels. System decides to
restore closed loop control
Actions: CHANGECONTROL PPAC

no new problems

In the case where the supervisory system is considered to have a finite

calculation time, the supervisor is unable to respond to the saturation of the

parameter estimation projection algorithm until 3 seconds have passed. At this

time the supervisor chooses new initial conditions for the estimator and re.initializes

the algorithm. As in the previous case, continued high error values force the

supervisory system to initiate an open loop training sequence at 4.5 seconds.

Training continues until 30 seconds have passed, at which time the prediction errors

of the model become small enough so that the supervisor can reestablish closed loop

control with a pole placement adaptive controller, (see Fig. 5.21).

In both the instantaneous time, and the finite calculation time cases, the

superv/sory system was able to detect a bad choice of initial conditions, and then

re-parameterize the cutting force model with a new set of initial conditions. The

189

supervisory system also demonstrated the ability to abandon closed loop control,

and retune the parameters with an open loop training sequence. As in the previous

simulations, the finite calculation time case and the instantaneous calculation time

case have some notable differences in behavior, but are both able to establish good

controller performance.

5.6 Conclusions

In the preceding discussions four case studies were considered that illustrate

the use of the expert supervised adaptive controller described in chapters 3 and 4, as

a cutting force controller for the end milling process. The purpose of the case

studies was to examine how well the supervisory system architecture, and the

associated knowledge engineering, achieved our goals for adaptive controller

problem detection and treatment. Among the highlights of the simulations, was the

successful demonstration of the time distributed interactive diagnostic paradigm

that we developed for the expert supervisory system. In the first case study,

excitation problems were considered, and the methods that the system uses to

detect and treat low excitation were shown for the cases where the controller was

saturated and unsaturated. One of the important ideas illustrated by this

particular set of simulations was that treatments administered by the expert

supervisory system can be activated in a context sensitive way. Over

parameterization problems were considered in the next set of simulations, section

5.3, and it was shown that the expert supervisory system is able to manage model

structure determination experiments as well as control law changes that may be

required. This set of case studies is interesting in that it shows how estimator

problems and controller problems may interact with one another. In section 5.4, the

190

case studies addressed the problem of deterministic disturbance detection and

rejection, for the situation where several forms of cutter runout were included in the

model of the cutting dynamics. It was shown that deterministic disturbances, which

produce many if the same symptoms that over parameterization does, can be

successfully identified through analysis of the parameter estimates. Once

disturbances were identified, a large part of the effects of the runout forces could be

rejected from the cutting force response, (saturation and imperfect disturbance

models did limit rejection properties). The last case study included in the chapter,

showed how the supervisory system responds to poor initial conditions on the

parameter estimates. In this case, the supervisory system recognizes that

performance problems are due to initial conditions, and restarts the parameter

estimation algorithm with a new set of parameters. This case also provides an

example of the ability of the supervisor to switch to an open loop training mode

when parameter estimates are unable to provide a good basis for control actions.

In each of the cases mentioned above, we supplied the results where the

adaptive controller is unsupervised, plus two simulations of supervised adaptive

controllers. In the supervised adaptive control examples, one of the simulations was

based on the assumption that expert system calculation times were instantaneous,

while the other modelled the expert system calculations as taking place over a finite

time interval of one ESSI. The reason for including both sets of results was that the

instantaneous case provided a kind of "ideal response" for the expert supervised

adaptive controller, in contrast to the more realistic finite calculation time case.

Although differences in the response between the finite time and instantaneous time

simulations did exist, in all cases, the expert supervised adaptive controller was able

to out perform the unsupervised adaptive controller.

191 7-

One of the most important results of the case studies presented here was the

validation of the time distributed, interactive diagnostic and treatment techniques

that the supervisory system supports. In most of the simulations we described, the

supervisor plans out a set of testing procedures that it needs to run in order to

determine whether or not some problem condition is true. For example in the over

parameterization case study, the supervisor schedules akaike tests, PBM AIC and

NM AIC, and waits for results to determine whether or not a smaller model

formulation is still an adequate representation of the cutting force dynamics.

Simpler event--driven systems described in chapter 1, cannot provide this kind of

interactive diagnostic capability, and are limited to supervision of problems that do

not involve multiple stages of diagnostics. In the set of simulations given in this

chapter, we have demonstrated that the interactive time distributed diagnostic

features of the supervisor are effective even for problems like over parameterization

or deterministic disturbance rejection, where diagnosis and treatment evolves over

several stages.

CHAPTER 6

Discussionsand Conclusions

In this work, a two level control architecture was presented that uses an

expert system based supervisor at the upper level to diagnose and treat problems

with an adaptive controller at the lower level. We begin the discussions in chapter

one with a review of the evolution of expert supervised adaptive controllers from

primitive procedurally coded "safety nets". It was shown that procedural

implementations of knowledge have limited expressiveness, and therefore limited

supervisory capabilities. Another drawback of procedural implementations of

supervision functions noted, was that changes to the knowledge of the program, or

the addition of new functions could necessitate major restructuring of the

supervisory program; inflexibility is an inherent property.

Expert system based supervision systems were discussed as an alternative to

the limitations imposed by procedurally implemented supervision systems. It was

shown that out of the eight systems we described from the literature, each of the

expert supervised adaptive controllers could be assigned to one of the following

operational categories:

Systems that used simple heuristicsfor supervision and
had fastexecution times.

Systems that made use of "deep knowledge" about adaptive
control, and were slow.

None of the systems in the group we examined had the abilityto use intelligence

about time as part of their diagnostic and treatment actions. The event-driven

supervision paradigm that these systems use was criticizedfor its inabilityto

192

193

handle diagnostic processes that are distributed over time, and/or involve

interaction with the adaptive controller. As shown in the case studies in chapter 5,

problems like over parameterization and disturbance rejection, depend on the ability

of the supervision system to plan ahead, and to run experiments on the adaptive

controller. We concluded the chapter with a summary of the temporal features we

designed for our expert supervisory system, that allow the system to address

adaptive control problems that depend on more complex time based diagnostics.

Our primary contribution to the field of supervisory systems for adaptive control,

was shown to be the development of a system which allowed a diagnostic and

treatment process that evolves over time through interaction with the adaptive

controller. Planning, temporal reasoning, and time based knowledge representation

schemes were all part of the accomplishments which allow more complete

supervision capabilities than the supervisory systems described in the literature.

After presenting background information and functional goals for the expert

supervised adaptive controller architecture in chapter one, we proceeded in chapters

2 - 4, to describe more of the details about the system. In chapter 2, a detailed

review of adaptive controllers was given, beginning with an explanation of the

estimation algorithms and their problems, proceeding to a discussion of available

control algorithms. In each case, operating principles, problem conditions as well as

possible problem diagnosis and treatment methods were reviewed. One of the

important issues that emerged in chapter 2 was that many of the diagnostic and

treatment methods we described did not fit into an event--driven paradigm.

Diagnostics for problems such as over parameterization were described that required

active manipulation of the adaptive controller structure; sensor information alone

was not adequate.

194

In chapter 3, we described the expert system based supervisory architecture

that was built to implement the interactive diagnostic tasks described in chapter 2

for the supervision of an adaptive controller. We began with an overview of the

structure and general functions of the system; it was noted that the supervisory

system could be motivated as a feedback controller for the adaptive controller itself.

A detailed discussion of the expert system module was given, and it was shown that

the knowledge representation that the system supports, and the internal structures

of the system, all enable the expert system module to manage the interactive style

of diagnostics that we proposed in chapter 2.

In chapter 4, knowledge engineering work for the supervisory system was

reviewed. This chapter described the process by which the diagnostic techniques

presented in chapter 2, were translated into a form that the expert system module

detailed in chapter 3, could utilize. The chapter consisted of three main sections.

In the first section, the feature variables that the expert system module uses to

monitor the adaptive controller were presented. In the next section, a directory of

the adaptive controller supervision knowledge was given which catalogued the

various adaptive controller problem areas, and the diagnosis and treatment rules

associated with these problem areas. Finally, a case study of the knowledge

engineering process was given for the over parameterization problems. Rule

formulations were described in detail, as well as diagnostic functions referenced by

the rules, and their associated procedure library instantiations.

After completing the descriptions of the expert supervisory system and the

associated knowledge engineering, in chapters 2, 3, and 4, we presented the results

of a simulation study in chapter 5, where the expert supervised adaptive controller

was applied to control cutting forces for an end milling operation. The end milling

195

processwas chosen as a test case for the system due to the many challenges it poses

for implementations of conventional adaptive controllers. Wide variations in

process dynamics, in addition to commonly experienced problems such as cutter

runout and controller saturation, make force control for the end milling process

particularly difficult. Four sets of simulations were presented to show how the

expert supervisory system handled a representative selection of adaptive controller

problems. In the first case, excitation problems were considered, and it was shown

that the system was able to dec/de when

react to excitation problems in different

controller saturation was present. In

excitation problems were present and

ways depending on whether or not

the second set of simulations, over

parameterization problems were examined, and it was shown that the supervisory

system was able to detect and correct model structures for the cutting process, and

maintain controller performance. In the third set of simulations, cutter runout,

(which was considered as an uncontrollable disturbance with deterministic

components), was introduced into the cutting force simulation, and the expert

supervisory system detected the presence of the runout and modified the control

structure and the estimation algorithm to reject the effects of the cutter runout

forces. In the last example, the expert supervisory system was used to detect a

situation where a poor choice of initial conditions causes estimation algorithm

problems, and in turn, unacceptable performance. Reinitialization functions, as well

as the capability to switch to an open loop training sequence, are some of the

supervisory features that this example illustrated.

In all of the cases mentioned above, the supervisory system was simulated in

two modes; an instantaneous calculation time mode, and a finite calculation time

mode. The purpose of including both cases was to provide an ideal case for expert

196

supervision, and a more "real world" case to see whether or not the knowledge

engineering for the system would be robust to time delays. As was shown in chapter

5, both the instantaneous supervision case, and the finite time supervision case,

performed better than the unsupervised case, and in most situations were both able

to maintain good performance.

Perhaps the most important result of the simulations was to show that the

interactive, time distributed paradigm we developed for the supervisory system

actually worked well. In all of the simulations we ran, the expert supervisory began

by interpreting sensory data from the signal-to-symbol interface, and formulating

an initial diagnosis as to what might be wrong with the adaptive controller. At this

point, the supervisor would have to decide what, if any, testing procedures needed

to be activated in the adaptive controller environment to confirm the status of the

hypothesis that it generated. In some cases like "low excitation", this step was

simple, requiring only that the supervisory system run a passive procedure called

"input_.test" in the adaptive controller environment. In other cases like over

parameterization, diagnosis took place over several stages, and model

reformulations, control law changes and verification tests were all part of the

activities that the supervisory system directed before a lower order model was

accepted as the "present best model" of the plant. The final step in the process

required the supervisory system to plan out a schedule of when to apply the

procedures it wanted to run. Execution order constraints, concurrency conditions

on procedure results, and inter-procedure confl/cts were all considered at this stage.

We note that the approach is fundamentally different from the event driven

paradigm used in other supervisory systems, and should allow greater freedom in the

choice of supervisory tasks that are created for the adaptive controller.

197

One of the main limitations of the work presented at this point is the

problem of calculation time. Presently, the system has only been tested in

simulation, and speed issues have not yet been addressed. In order to apply the

supervision system to high speed applications such as aircraft control or

manufacturing process control, response time must be guaranteed, and expert

system calculation times must be decreased. These goals are not unobtainable

however, and for future work, we list the following development areas:

Incorporation of a Progressive Reasoning paradigm in
the expert system module to achieve guaranteed response
time

Translation of the expert system code into a compilable

language such as C.

Partitioning of the adaptive control knowledge into smaller
self contained knowledge sources.

The first item listed here, incorporation of progressive reasoning ideas, uses

the notion that the expert supervisor should always have at least an approximate

diagnosis of problems available. In the progressive reasoning paradigm, "layers" of

rules are used to refine coarse initial diagnosis into specific problem diagnosis. For

each layer of the reasoning process, the supervisory process, the supervisor has some

indication of what problems are present, and can offer some form of corrective

actions even if time runs out before a complete diagnosis is finished. In our

supervisory system, classification rules described in chapters 3 and 4 could make up

the first layer of a progressive reasoning scheme, allowing more time consuming

tasks like proof selection and scheduling to take place over several expert system

sampling intervals. The main benefit of including the progressive element in the

supervisory system is not so much that it speeds up calculations, but that it

198

guarantees some form of response at all times.

To increase calculation speed, the most attractive option, is to rewrite the

expert system code in a compilable language such as C. Presently the expert system

is written in LISP and must run in a slow interpretive mode. Although LISP is an

excellent language to prototype an expert system with, it is not a good language to

use for the final implementation of the system if speed is of primary concern.

The last issue we mention here, is the division of the rulebase into smaller

self contained knowledge sources. In many cases, the knowledge about specific

problem classes of the adaptive controller could easily be grouped together

independently from knowledge about other classes of problems. Searching the entire

rulebase for knowledge about one specific problem area wastes calculation time and

is unnecessary. In the future, a much better way to organize the knowledge would

be to have several rulebases or knowledge sources, each focused towards a specific

problem area. For example, singularity problems in the estimation algorithm, (i.e.

low excitation and over parameterization), could be grouped together, as could

control algorithm problems. In addition to reducing search times in the system, the

partitioning of the supervision knowledge could also provide a natural transition

into the progressive reasoning ideas described above.

LITERATURE CITED

,

.

.

,

,

o

.

o

.

10.

11.

Goodwin, G.C., and Sin K.S., "Adaptive Filtering, Prediction and
Control", Prentice Hall Inc., Englewood Cliffs, New Jersey, 1984

Astrom, K.J., and Wittenmark, Bjorn, "Adaptive Control", Addison-
Wesley Pubhshing Company, New York 1989

Rohrs, Charles E., Valavani, Lena, et al,"Robustness of Continuous
Time Adaptive Control Algorithms in the Presence of Unmodelled
Dynamics", IEEE Transactions on Automatic Control, Vol AC-30,
No. 9, Sept. 1985, pp 881 - 889

Seborg, D.E., Edgar T.F., and Shaw S.L., "Adaptive Control Strategies
for Process Control: A Survey", AIChE Journal, June 1986, Vol 32,
No. 6., pp 881 -913

Tao. G. Ioannou, "Persistency of Excitation and Over Parameter-
ization in Model Reference Adaptive Controllers", Proceedings of the
27th Conference on Decision and Control, pp 757 - 758

Isermann R., and Lach.mann K.H., "Parameter Adaptive Control with
Configuration Aids and Supervision Functions", Automatica Vol. 2I
No. 6, 1985, pp 625 - 638

Cordero, Osorio, Mayne, D.Q., "Variable Forgetting Factors", IEE
Proceedings, Vol. 128, Ft. D., No. 1, January 1981, pp 19-23

Sullivan, G.A., Lauderbaugh, L.K., "IPEX: Interactive Process
Expert", Proceedings of the 1990 International Symposium on Intell-
gent Control, pp 1100 - 1105

Bitmead, Robert R., "Persistence of Excitation Conditions and Con-

vergence of Adaptive Schemes", IEEE Transactions on Information
Theory, Vol IT-30, No. 2, March 1984, pp 183 - 191

Johnstone, Richard M., and Anderson, Brian D.O., "Exponential Con-

vergence of Recursive Least Squares with Exponential Forgetting
Factor Adaptive Control", System and Control Letters, VoI 2., No. 2,
pp 69 - 82

Landau I.D., "Elimination of the Real Positivity Conditions in the

Design of Parallel MRAS", IEEE Transactions on Automatic Control,
Vol. AC-23 No. 6, Dec. 1978, pp 1015 - 1020

199

200

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Caines, Peter E., La Fortune, Stephane, "Adaptive Control with Re-
cursive Identification for Stochastic Linear Systems", IEEE Trans-
actions on Automatic Control, Vol. AC-29 No. 4, April 1984,
pp 312 - 320

Anderson, B.D.O. and Johnstone, Richard M., "Adaptive Systems and
Time Varying Plants", International Journal of Control, 1983, Vol 37
No. 2, pp 367- 377

Sobel, Kenneth M., and Kaufman Howard, "Direct Model Reference
Adaptive Control for a Class of MIMO Systems", in Control and
Dynamic Systems, Copyright 1986 by Academic Press Inc.
pp 245 - 314

Allidina A.Y., and Hughes F.M., "Generalised Self Tuning Controller
with Pole Assignment", IEE Proceedings, Vol 127, pt. D, No. 1, Jan-
uary 1980, pp 13 - 18

Lozano R.,"Independent Tracking and Regulation Adaptive Control
with Forgetting Factor", Automatica, vlS, n4, July 1982, pp 455 -459

Landau I.D., Lozano R., "Redesign of Explicit Discrete Time Model
Reference Adaptive Control Schemes", International Journal
Control, 1981, Vol 33, No 2, pp 247 - 268

of

Goodwin, Graham C., Ramadge, Peter J., Caines Peter E., " Discrete

Time Multi-Variable Adaptive Control", Vol AC-25, No. 3, June
1980, pp 449-456

Dug_d, L., Egardt D., Landau I.D., "Design and Convergence Analysis
of Stochastic Model Reference Adaptive Controllers", International
Journal of Control, 1982, Vol 35, no. 5, pp 755 - 773

Astrom K.J., Wittenmatk B., "Self Tuning Regulators Revisited",
Proceedings of the IFAC Identificationand System Parameter Esti-
mation,1985, York, U.K., pgs xxv-xxxiii

Lauderbaugh, L.K.,"Implementation of Model Reference Adaptive
Control in Milling", Ph.D. Dissertation, 1986

Wang L.,and Owens D.H., "Robust adaptive Controllers with Adap-
tation on the Sampling Rate", Proceedings of the 27th Conference
on Decision and Control, pp 303 -304

Fortescue, T.R., Kerschenbaum,L.S., and Ydstie B.E., "Implemen-
tation of Self Tuning Regulators with Variable Forgetting Factors"
System and Control Letters, Vol. 2, No. 2, 1982, pp 831 - 838

Ljung Lennart, and Soderstrom Torsten, "Theory and Practice of Recur
sive Identification", MIT Press, 1983, pp 831 -836

201

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Astrom K.J., Rundquist, Lars, "Integrator Wind-up and how to Avoid
It", Proceedings of the 1989 American Controls Conference,
pp 1693 - 1698

Goodwin G.C., Elliot H., Teoh E.K., "Deterministic Convergence of a
Self Tuning Regulator with Covariance Resetting", IEE Proceedings
Part D, Vol. 130 No.l, January 1983, pp 6 -8

Johnson, Rowland R., Canales, Tom, LAger D., " An Experiment to
Control a Fusion Energy Experiment", Proceedings of the 1986 Amer-
ican Controls Conference, pp 1170 -1175

Grzesiak, "Towards development of a Real Time System for Process

Control", Proceedings of the IEEE 1986 Conference on Decision and
Control, pp 627- 631

Whitlow, J.E., Debalek K.A., " A Knowledge Based Structure for
Process Control", Proceedings of the 1989 American Controls Con-
ference, pp 1354 - 1357

Basila M.R., Cinar A., "A MOdel Object Based Supervisory Expert
System for Fault Tolerant Chemical Reactor Control", Proceedings of

the 1989 American Controls Conference, pp 1348 - 1353

Moore R.L., "Expert System Methodology for Real Time Control",
10th IFAC World Congress, Vol. 6, pp 274 - 281

Karsai G., Blokland,C., et al,"IntelligentSupervisory Controller

for a Gas Distribution System", Proceedings of the 1987 American

Controls Conference, pp 1353 - 1358

Visuri,Pertti, Karim, M.N., "Application of Intelligence to Chemical
Process Supervision Systems", Proceedings of the 1986 American Con-

troisConference, pp 2130 -2135

Laffey,Thomas, et al,"Real Time Knowledge Based Systems", AI

Magazine, Volume 9, 1988, pp 27- 45

Handelman,David, Stengel, Robert F., "An Architecture for Real Time
Rulesbased Control", Proceedings of the 1987 American Controls Con-
ference, pp 1636 - 1642

Astrom K.J., Anton J.J., "Expert Control", 9th IFAC World Congress,
1984, pp 240 -245

Kraus T.W.,"Self Tuning PID uses Pattern Matching", Control Engin-

eering, june 1984, Vol 31, pp 106 - 111

202

38.

3g.

40.

41.

42.

43.

44.

45.

46.

47.

48.

4g.

50.

Litt J.,"An Expert System for Adaptive PID Tuning", Proceedings of
the Conference on Instrumentation and Control, 1986

Jones, A.H., "Real Time Expert Tuners for PI Controllers", Proceed-

ings of the Third IEEE International Symposium on Intelligent Control
1988 pp

Lieslento, J.,Tanttu J.T., et al, "An Expert System for Tuning PID
Controllers", Proceedings of the 1988 American Controls Conference,

pp 261 - 262

Anderson Kevin L., Blankship, Gilmer L., Lebow, Lawrence G., " A

Rulebased Adaptive PID Controller", Proceedings of the 27th IEEE
Decision and Control Conference, pp 564 -569

Arzen, Karl Erik, " Use of Expert Systems in Closed Loop Feedback
Control", Proceedings of the 1986 American Controls Conference,

pp 140 - 145

White, Gerald R., Bristol E.H., "EXACT and Beyond", Proceedings of

the ISA/88 V343 pt 4 pp 1593 - 1603

Sanoff S.P., and WeUstead P.E., "Expert Identification and Control"
Proceedings of the IFAC Identification and System Parameter Estima-
tion, York, U.K. 1985, pp 1273 - 1278

Astrom K.J., Anton J.J., Arzen K.E., "Expert Control", Automatica

May 1986, pp 277 - 286

Liu K. and Gertler J., "A Supervisory (Expert) Adaptive Control
Scheme", 10th IFAC Congress, Vol 6, 1982, pp 375 - 380

Liu K. and Gertler J., "On Line Stabilization of Adaptive Controllers

by De--tuning in a Supervisory Framework", Proceedings of the 1987
American Controls Conference, pp 194 -200

Gertler Janos, Chang Hong-Shung, "An Instability Indicator

Expert Control", August 1986, IEEE Control Systems Magazine,

pp 14 - 17

for

Neat, Greg, Wen J.T., Kaufman, H., "Expert Hierarchical Adaptive
Control", Proceedings of the 1989 American Controls Conference,

pp 13 - 18

Morant F., Albertos P., et al, "Hierarchical Expert System as Super-
visory Level in an Adaptive Control", Fourth IEEE International

Symposium on Intelligent Control, 1989, pp 18 - 25

203

51. Lalonde A.M. and Cooper D.J., "Automated Design and Implemen-
tation of a Generalized Predictive Controller", Proceedings of the
198g American Controls Conference, pp 1840 - 1845

52. Lingarkar, Ravi, Liu Li, Elbestawi, M.A., Sinha, Naresh K., "Know-
ledge Based Approach to Adaptive Computer Control in Manufacturing
Systems", Proceedings of the 1989 American Controls Conference
pp 365 - 370

53. Krijgsman A.J., Broeders H.M.T.,et al,"Knowledge Based Control",
Proceedings of the 27th Conference on Decision and Control, 1988,

pp 57O - 574

54. Michaelson,R.H., Michie, Donald, Boulanger, Albert, " The Tech-
nology of Expert Systems", Byte Magazine, April 1985,pp 303 - 312

55. Hansen, Peter D., Kraus, Thomas W., "Expert System and Model
Based Self Tuning Controllers", From Standard Handbook of Indus-
trial Automation, Editor Consodine, Douglas M, I986 Chapman and
Hall, New York, pp 216 - 219

56. Shirley, Richard S.,"Some Lessons Learned Using Expert Systems for
Process Control", Dec. 1987, IEEE Control Systems Magazine,
pp 11 - 15

57. Mahalingam, Sriram, Dudzinski, Edward C., "CSRL - a tool for
Building Diagnostic Expert Systems", Manufacturing Engineering, July
1988, pp 79 -82

58. Astrom K.J., "Maximum Likelihood and Prediction Error Methods",

Automatica, Vol. 16. pgs 551 -574

59. Ljung Lennart, "Analysis of Recursive Stochastic ?algorithms", IEEE
Vol. AC-22 No. 4, August 1977, pp 551 - 574

60. Wahlberg Bo, Ljung, Lennart, "Design variables for Bias Distribution
in Transfer Function Estimation", IEEE Transactions on Automatic
Control, AC-31, No. 2, Feb. 1986, pp 134 - 144

61. Woodside C.M.,"Estimation of the Order of Linear Systems", Auto-

matica, Vol. 7, 1971, pp 727- 733

62. Unbehauen H., Gohring B., "Tests for Determining Model Order in
Parameter Estimation", Automatica, Vol. I0.,No. 3, pp 233 -244

63. Hayes-Roth Frederick, "Rule-based Systems", Communications of the
ACM, September 1985, Vol 28, No. g, pp 921 - g32

204

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

Kreisselmeier,Gerhard, "An Indirect Adaptive Controller with a Self
Excitation Capability", IEEE Transactions on Automatic Control,
AC-34 n5, May 1989, pp 524- 528

Van Den Boom A.J.W., Van Den Enden, A.W.M.,"The Determination
of the Orders of Process and Noise Dynamics", Automatica, Vol 10,

•pp 245 - 256

Akaike, H.,t'Modern Development of the Statistical Methods", From
Trends in Progress in System Identification, Editor, Pieter Eykhoff,

Vol. 1, pg 169 - 182, Pergammon Press 1981

Pandit S.M., Wu,S.M., "Time Series and Systems Analysis with Appli-
cations", Copyright 1983, John Wiley and Sons Incorporated.

Bierman, G.J.,"Factorization Methods for Discrete Sequential Esti-
mation", Academic Press, New York, 1977

Stansfield S.A.,"Angy: a Rulebased System for Identifying and Isolat-
ing Coronary vessels in Digital Angiograms", IEEE First Conference on
AI Applications", 1984, pp 624 -G29

Lee H.S., Thakor, N.V., "Frame Based Understanding of EGG signals",
IEEE First Conference on AI Applications, 1984, pp G24 - 629

t! °
Ganascia, J.G., Using an Expert System in Merging Qualitative and

ItQuantitative Data Analysis , International Journal of Man Machine
Studies, 1984, Vol. 20, pp 319 -330

Rader, C.V., Crow, V.M., and Marcot B.G.,"CAPS: A Pattern Recog-
nition Expert System Prototype for Respiratory and Anesthesia Mon-
itoring", 1987 IEEE Western Conference on Expert Systems, pp

Freiling, Mike, Alexander, Jim, et al.,"Starting a Knowledge Eng-
ineering Project: a Step by Step Approach", The AI Magazine, Fall
1985, pp 150 - 164

Nii, Penny H., Feigenbaum Edward, etal, "Signal-to-Symbol Trans-
formation: HASP/SIAP Case Study", The AI Magazine, Spring 1982,
pp 23 - 35

Nii, Penny H., "Blackboard Systems: the Blackboard Model of Problem

Solving and the Evolution of Blackboard Architectures", The AI Mag-
azine, August 1986, pp 82 - 106

Nii, Penny H., "Blackboard Systems, Blackboard Application Systems,
Blackboard Systems from a Knowledge Engineering Perspective", The
AI MAgazine, August 1986 pp 82 - 106

205

77. Hayes-Roth, Barbara, "A Blackboard Architecture for Control",

ArtificialIntelligence,Vol. 26, pp 251 - 300

78.

79.

80.

81.

82.

Sullivan, G.A., Lauderbaugh, L.K., "Expert Aided Adaptive Control",
Proceedings of the Third IEEE International Symosium on Intelligent
Control, 1988, pp 574 -579

Dickey, Frederick J., Toussaint, Amy L.,"ECESIS: Application of

Expert Systems to Manned Space Stations", IEEE First Conference on
Artificial Intelligence Applications, pp 483 - 489

D'Ambrosio, Bruce, et al, "Real Time Process Management Comp-

osition in Chemical Manufacturing", IEEE Expert, Vol. 2, No. 2, 1987,
pp 80 - 92

Fagan M., et al, "Representation of Dynamic Clinical Knowledge,
Measurement, Interpretation in the Intensive Care Unit", 6th Inter-
national Joint Conference on Artificial Intelligence, pp 260 - 262

Deering, Michael F., "Architectures for AI", Byte Magazine, April 1985
pp 193 - 206

APPENDIX

The purpose of this appendix is to provide a complete listing of the rules in

the rulebase, as well as definitions of the functions and threshold values referenced

by the rules. The appendix has four main parts, the rulebase listing, threshold

value listings, internal function definitions, and external function definitions. In the

case of the internal and external function definition sections, a brief summary of the

task that the function performs is given along with a description of the arguments of

the function and it's output. For external functions, the procedure library

instantiations associated with particular functions are given.

A-1Rulebase:

((R1

(R2

(R3

(R4

(IF (LT (MAG(GET VALUE DELP))TH P 2)

(LT (GET VALU'EP) TH P I} ---

(LT (GET--VALUEDEL THET)TH_T i))
(THEN (ESTIMA-TES HAVE C-ONVERGED)))--

(IF (NOT (REINIT USED))

(GT (GET VATUE DELP) (NEG TH P 2))

(GT (GET--_VALUE P) TH_P_I))

(THEN (PROBLEM HYPOTHESIS

[-OVER PARAMETERIZATION))

(PROBLEM HYPOTHESIS

_OW EXCITATION))))

(IF (IS (GET VALUE FF) 1.0)

. (G.T (GET--VALUE DEL EPS) 1.0))

(THEN (PROBLEM HYPOTH-ESIS (FF TOO HIGH))))

IF (GT (GET VALUE EPS) (TH_R__I))

THEN (PROBLEM_HYPOTHESIS (SYSTEM CHANGE))

(PROBLEM HYPOTHESIS
_ibROJECTION ALGORITHM

SATURATION)

(PROBLEM HYPOTHESIS (SCALING IS LOW))
(PROBLEM--_IIYPOTHESIS (SCALING IS HIGH))))

206

(R5

(R6

(R7

(R8

(R9

(RIO

(Rll

(RI2

(RI3

(IF (LT (GET VALUE P).I) .
(GT (GET--VALUE EPS) 1.0)

. (IS (GET VALUE FF) 1.0))
(THEN (FF TO HIGH)))

IIF(FFTOO HIGH)
THEN (FORGET LOWER)))

(IF (LT (GET VALUE VAR Y) TH_VARY I)

(LT (GET--VALUE DEL VAR Y)T H V-ARY 2)
_ (LT (GET--VALUE U SAT) TH_U I)-- --
(THEN (EXCITATION PERMITTED)))- --

IF (LT (GET VALUEP)TH P I))

THEN (PROBLEM HYPOTHESIS-

(ZERO COEFFICIENTS PRESENT))))

IF (ZERO TEST))

THEN (ZER"O COEFFICIENTS PRESENT)))

IF (ZERO COEFFICIENTS PRESENT))
THEN (REINITIALIZE NM)))

IF (IF (REPEATED ROOTS))
THEN (OVER PARAMETERIZATION)))

IF (OVER PARAMETERIZATION))

THEN (REINITIALIZE NM)))

(IF (OVER PARAMETERIZATION)

(FILT AB_EXISTS)

(C_OR-CONTROL IS D-STEP)

CONTROL--IS MRAC)

CONTROL--IS PPAC)))

(THEN (CHA NGE_CONTROL INT-MODEL)))

207

(RI4

(R15

IF (IS (INPUT TEST NONE) FALSE)

THEN (LOW EXC-_TATION)))

(IF (LOW EXCITATION)

(LT (GET VALUE VAR Y) TH_.VARY i)

(LT (GET--VALUE DEL_--VAR Y) TH_V-ARY 2)

. (LT (GET VALUE U SAT) TH- U I)) --

(THEN (ADD_E--XCITATION REF)))

2O8

(R16

(R17

(R18

(R19

(R20

(R21

(R22

(R23

(R24

(R25

(IF (LOW EXCITATION)

(C OR(GT (GET VALUE U SAT)TH U I)
-- (GT (GET--VALUE VAR Y) TH_iVARY 2)

(GT (GET_VALUE DEL--VAR Y) --
TH VARY__2)))

(THEN (KEG NONE) --
(FORGET RAISE)))

IF (GT (GET VALUE SCALE) TH_SC_I))

THEN (SCALIN'G IS HIGH)))

IF (LT(GET VALUE SCALE) TH SC 2))

THEN (SCALING IS LOW)))

IF (SCALING IS LOW))

THEN (SCALER RAISE))

IF (SCALING IS HIGH))

THEN (SCALER LOWER)))

IF (GT (GET VALUE C_SAT) TH CS i))
THEN (PROJECTION ALGORITHM S-ATURATION)))

IF (PROJECTION ALGORITHM SATURATION))

THEN (REINITIALIZE C)))

(IF (Lq

N(
N(

(THEN

GET VALUEP)TH P 1)
MAG(GET VALUE'DE-LP)) TH p
GET VALU-E EPS) (TH_R 1))"
GET--VALUE DEL_EPS) TH R_2)

2 (ON--SCHEDULE REINTIAL_E))
(REI-NIT USED))

q (REINSTALL USED)))
SYSTEM CHANGE)))

2)

IF (SYSTEM CHANGE))

THEN (REINITIALIZE ALG)))

(IF (THERE EXISTS NM)
(LT (MAG (GET VALUE DEL_,.THET)) TH_ _

(LT(GET VALU--EP) TH P i)

(LT (GET--VALUE DELP))TH e 2))

(THEN (PROBLEM HYPOTHESIS
(NM BE--TTER THAN PBM)

(PROBLEM HYPOTHESIS

(NM W-ORSE THAN PBM))))

T i)

(R26 (IF (LT 'GET_VALUE P) TH P I)
(LT 'MAG (GET_VALUE-'DE'-LPT)) TH_P 2)

(LT MAG(GET VALUE DEL THET))-TH T 1)
. (G T PBM_AIC N'ONE) (NM_A'iC NONE)))-- --
(TEEN (NM BETTER THATN PBIVI)))

(R31

(R32

(R33

(R34

(R27 (IF (N M BETTER THAN PBM))

(THEN (REASSIGN PBM_TO_NM)))

(R28 (IF (LT (GET_VALUE P) TH_P i)

(LT (GET VALUE DELP)TH e 2)

(LT (MAG--(GET VALUE DEL--THET)) TH

(LT (PBM AIC NONE) (NM_A'iC NONE)))-- --
(THEN (NM WORSE THAN PBIVI)))

(R29 (IF (N M WORSE THAN PBIVl))

(THEN (REINSTALL PBM)))

(R30 (IF (GT (GET VALUE U_SAT).8).
(C OR CONTROL IS D-STEP)

,'CONTROL--IS MRAC)))
(THEN (PROBLEM HYI_OTHESIS

(PLA"NT IS NON_MIN_PHASE))))

(IF (LT (GET_VALUE EPS) (TH R_I))
(LT (GET_VALUEDEL_EPS) TH R 2)
(NON MIN PHASE TEST)) ---

(THEN (PL]NT I-SNON_MIN_PHASE))))

(IF (PLANT IS NON MIN PHASE)

(C_OR (CONTROL ISD-STEP)
. . (CONTKOL--_IS MRAC))
(NOT (THERE EXISTS NM))

. (REPEATED_R'OOTS)))
(THEN (CHANGE CONTROL INT /vlODEL)

(REINITIA_IZE NM))) --

(IF (PLANT IS NON_MIN PHASE)
(THERE EXISTS NM)--

(C OR(REPEATED ROOTS)
-- (FILT AB E-XISTS))

(C OR (CONT-ROL- IS D-STEP)

. -- (CONTROL--IS MRAC)))
(THEN (CHANGE_CONT-ROL INT-MODEL)

(IF (PLANT ISNON_IVIIN_PHASE)
(NOT (THERE_EXISTS NM))

(NOT (REPEATED ROOTS))
(C_OR (CONTROL__IS D_STEP)

. (CONTROL IS MRAC)))
(THEN (CHANGE_CONTROL PPAC)))

T 1)

209

D

210

(R35 (IF (GT (GET VALUE U SAT).8))
(THEN (PROBL-EM HYPO--THESIS (TRAINING NEEDED))))

(R36 (IF (GT GET VALUEDELP)(NEGTH P 2))

GT GET--VALUE P) TH P I)

GT GET--VALUE EPS) (TH__K_I))

GT GET--VALUE DEL Eps).I0.0)

GT GET--VALUE U SAT).8)

NO (CONTROL IS]-NT MODEL)))

(THEN (_ L_INING NEEDED)))

(R37 (IF (GT (GET VALUE VAR_Y.) 2.50000)
(GT (GET--VALUE U SAT).8)
(NOT (CONTROL IS_NT-MODEL)))

(THEN (TRAINING NEEDED)))

(R38 (IF (TRAINING NEEDED) .
(GT (GET_VALUE DELP)-I.0))

(THEN (CHANGECONTROL OPEN-LOOP)))

(R39 (IF (CONTROL IS OPEN-LOOP))

(THEN (PROBLEM HYPOTHESIS
(TRAINING IS SATISFACTORY)))

(R40 (IF (CONTROL IS OPEN-LOOP)
(LT (GET "VALUE EPS) (TH_R_I))
(LT (GET--VALUE DEL EPS) 1.0)))

(THEN (TRAINi-NG IS SATISFACTORY)))

(R41 (IF (TRAINING IS SATISFACTORY)
. (NOT (FILT AB EXISTS)))

(THEN (CHANGE__CO--NTROL PPAC)))

(R42 (IF (TRAINING IS SATISFACTORY)
(FILT AB EXISTS)))

(THEN (CHANG--E_CONTKOL INT-MODEL)))

(R43 (IF (LT (MAG (GET VALUE SYLV DET)).001))
(THEN (PROBLEM _-YPOTHESIS --

(REPEATED ROOTS IN AB))))

(R44 (IF (LT (GE T VALUE SYV DET) .001)
(C OR (R_PEATED R_OTS)

-- (FILT AB E-XISTS)))

(THEN (REPEATED ROOTS IN AB)))

(R45 (IF (REPEATED ROOTS IN AB)
(CONTROL IS PPAC))

(THEN (CHANGE- CONTROL INT-MODEL)
(REINITIA_IZE NM)))

211

(R46 (IF (REPEATED ROOTS IN AB)
(CONTROL_IS INT-MODEL))

(TEEN (REINITIALIZE NM)))

(R47 (IF (CONTROL_IS INT_MODEL).
(GT(GET VALUE U SAT).8)
(NOT(CO T PROJ_--USED)))

(THEN (PKOBLEM--_HYPOTHESIS (WIND UP PROBLEM))))

(R48 (IF (IS(F POLY CHECK) TRUE))
(TEEN (Wf'ND UP"@ROBLEM)))

(R49 (IF (WIND UP PROBLEM))
(THEN (CONT_PROJ_LOWER)))

(RS0 (IF (CONTROL_IS INT-MODEL)

(CONT PROJ USED)
(G T (GE-T VATUE U SAT).8))

(THEN (TRAINING NEEDE'-D)))))

A-2 Threshold Defintions:

In this section, threshold values referenced in the rules are defined. The

table of threshold values that follows has three columns corresponding to the

threshold name, the feature variable it's used with, and it's numerical value.

Threshold values are arranged alphabetically according to the name of the

threshold:

Threshold Name Feature Variable Numerical Value

TH R 1 EPS, variance of 20.0

prediction error

TH P 2 DELP, change in the .005
covariance

TH P 1 P, normalized trace .01
of the covariance

212

TH R 2 DEL EPS, changein 20.0
the prediction err-
or

TH_SC_I SCALE, output/input i0.0
magnitude ratio

TH SC 2 SCALE, output/input 0.1
-- -- magnitude ratio

TH T 1 DEL_TttET, change in .05
the norm of the par-
ameters

TH U 1 U_SAT, Controller .5
saturation index

TH_VAR_Y VAR._Y, Variance of 100.0
the output about the
setpoint

TH VARY 2 DEL VAR_Y, change in 20.0
-- -- the v_riance about

the setpoint

A-3 Internal Function Definitions:

In this section, brief descriptions of the internal functions used by the rules

are given, along with listings of arguments, outputs and side effects of the functions.

CONTROL_IS <arg>

Description: Checks to see of the control algorithm presently
in use, is the one specified by arg

Inputs: arg, a character string

Outputs: t,nil

Side Effects: None

213

C_OR <argl>...<argn>

Description: Logically OR's the arguments together

Inputs: arg k, t,nil, or sentences that evaluate to logical
expressions

Outputs:t,nil

Side Effects: none

FILT AB EXISTS <nil>

Description: Checks to see whether any filters are in use
for deterministic disturbance rejection

Inputs: none

Outputs: t,nil

Side Effects: None

F POLY CHECK <nil>

Description: • Checks to see if the poles of the feedback filter

are marginally stable for detection of controller
wind up

Input: none

Output: t, if the feedback filter is marginally stable, nil
otherwise

Side Effects: None

GET_VALUE <arg>

Description:

Inputs:

Outputs:

Retrieves the numerical value

from the factbase

arg, a character string

a numerical constant

Side Effects: none

of "arg"

GT <arg1> <arg2>

Description:Checks to see that the numerical value argl
is greater than arg2

Inputs: argl, arg2, numerical constants

Outputs: t,or nil

Side Effects: None

LT <argl> <arg2>

Description: Checks to see that the numerical value argl
is less than arg2

Inputs: argl and arg2, numerical constants

Outputs: t, nil

Side Effects: None

MAG <arg>

Description: Computes the magnitude of it's argument

Inputs: arg, a numerical constant

Output: a numerical constant

Side Effects: None

NEG <arg>

Description: Negates the numerical value of it's argument

Inputs: arg, a numerical constant

Outputs: a numerical constant

NON MIN PHASE TEST <nil>

Description: Checks to see if the estimated parameters
plant model indicate that the plant is non min-
imum phase.

Inputs: none

of

214

the

Outputs: t, if plant is non minimum phase,nil otherwise

SideEffects: None

NOT <arg>

Description: Negatesthe logical value of its argument

Inputs: arg, t, nil, or a sentence that evaluates to t, or nil

Outputs: t,nil

Side Effects: none

ONSCHEDULE <arg>

Description: Checks to see if arg is a procedure on the schedule

Inputs: arg, a character string

Outputs: t,nil

Side Effects: None

REPEATED ROOTS <nil>

Description: repeated_roots finds common roots among the model
polynomials, and then analyzes their locations to
decide if the model is over parameterized, (mag-
nitude of roots < .8), or if deterministic distur-

bances are present, (magnitude of roots > .8). If
deterministic disturbances are present, repeated
roots calculates a filter polynomial based on these
roots, for use in the estimation and control algorithms

Inputs: none

Outputs: t, if common roots are found, nil otherwise

Side Effects: Instantiates "NM" slot of the model frame with a
new model structure. For deterministic disturbances

the function calculates a filter polynomial based on
the common roots, and includes it in the NM slot.

215

216

THERE_EXISTS <arg>

Description: Checks to see if arg is a model in the model frame

Inputs: arg, a character string

Outputs: t, or nil

Side Effects: None

ZERO_TEST <nil>

Description: This function is used to polish model parameterizations
eliminating leading and trailing zero coefficients form the
the estimated model once convergence occurs. If changes
are made, the new model formulation is stored in the
NM slot of the model frame.

Inputs: none

Outputs: t, if there are zero-valued coefficients, nil otherwise

Side Effects: NM will be instantiated with a modified model in the

event that zero test finds leading or trailing
coefficients of z'_o value.

A-4 External Function Definitions:

As in the case of internal functions, a description of the external function and

it's arguments are given. In addition, the procedure library instantiations for the

external function and it's associated directives are given.

ADD_EXCITATION <directive>

Description: Add excitation applies a white noise dither signal to
eith_'the reference input of the controller or the

input of the controller or the input signal itself, for
a duration of five Expert System Sampling Intervals

Inputs: There are two allowable directives

input to add__excitation:
which may be used as the

217

REF; causes exaltation to be added to the reference signal
U; Causes exaltation to be added to the input signal

Outputs: After execution returns "Add_Exc_Used"

Procedure Library Instantiations:

(ADD EXCITATION

(U (U) (NO PRECONDITIONS) (END T -- 5)
(RESULT_VALIDITY i))

(REF (REF) (NO PRECONDITIONS) (END T = 5)
(RESULT_VALIDITY I)))

CHANGE CONTROL <directive>

Description: This function swaps the control law to a new control
law specified by the directive

Inputs: This function uses five possible directives to specify which
control law to use:

D-STEP, d--step ahead control law

MRAC, model reference control law
PPAC, pole placement control law
INT-MODEL, Internal model principle style controller
OPEN-LOOP, open loop control

Outputs: none

Procedure Library Instantiations:

(CHANGE_CONTROL

(D-STEP (U) (NO PRECONDITIONS) (END TIME

(RESULTVALIDITY i) •

(MRAC

(PPAC

=i)

U) (NO PRECONDITIONS) (END TIME = I)

RESULT_VALIDITY i)

U) (NO PRECONDITIONS) (END TIME = i)
RESULTVALIDITY i)

(INT-MODEL (U) (NO PRECONDITIONS) (END TIME = 1)
(RESULT_VALIDITY i)

(OPEN-LOOP (U) (NO PRECONDITIONS) (END TIME = i))

218

CONT PROJ <directive>

Description:

Inputs:

This function projects the roots of the filter
polynomial D(q), used in the internal model
principle style controller, into the unit circle
for a period of three expert system sampling int-
ervals, to resolve wind up problems

Cont_proj has only one directive, "LOWER", which is
used to project all of the roots of D(q) into the
unit circle with a projection factor of .9

Outputs:

Procedure Library Instantiations:

(CONT PROJ (LOWER (U) (NO PRECONDITIONS)(END T
-- (RESULT_VALIDITY I)))

After execution, cont_.proj returns "cont_proj_used"

=3)

FORGET <directives>

Description: Forget raises or lowers the forgetting factor

Inputs: Forget has two directives, RAISE and LOWER;
RAISE, assigns the forgetting factor a value of one

LOWER, assigns the forgetting factor a value of Ami n

Outputs: None

Procedure Library Instantiations:

(FORGET

(RAISE (LAMBDA)(NO PRECONDITIONS) (END T = i)

(RESULT_VALIDITY I))

(LOWER(LAMBDA) (NO PRECONDITIONS) (END T = I)
(RESULT_VALIDITY I))

INPUT TEST <directives>

Description: Inputtest determines whether or not excitation
is adequate for identification of a model of a
certain structure

Inputs: None

NM

Outputs: TRUE if excitation is adequate, FALSE if not

Procedure Library Instantiations:

(INPUT_TEST

(NONE)

AIC <directives>

Description:

Inputs: none

NO CONTROLLED VARIABLES)
NO PRECONDITIONS)

END TIME = 1) (RESULT_VALIDITY 1)))

This function has no directives and is used to
calculate the akaike information index for a
model formulation stored in the NM slot of the
model frame.

Outputs: The akaike information index for NM

Procedure Library Instantiations:

(NM AIC (NONE (NO CONTROLLED VARIABLES)

(NO PRECONDITIONS) (END T = 5)

(RESULTVALIDITY I0)))

PBM AIC <directives>

Description: Calculates the akaike information index for the
model in the PBM slot of the model frame.

Inputs: None

Outputs: The akaike information index for the model in PBM

Procedure Library Instantiations:

(PBM AIC (NONE (NO CONTROLLED VARIABLES)
-- (NO PRECONDITIONS)(END T = 5)

(RESULTVALIDITY I0)))

BEG <directives>

Description: Reg is a regularization routine that adds a small
positive definite matrix to the covariance matrix
to prevent parameter burst phenomenon

219

220

Inputs:

Outputs:

None

After execution, generates "REG_USED" message

KEINITIALIZE <directives>

Description: This function is used to reinitiahze the parameter
estimation algorithm, in four different ways cor-
responding to the four directives described below.

Inputs: C, causes the reinitialize function to randomly pick new
parameterizations for the estimates of the parameters
of the C(q) polynomial; Covafiance is not Reset

NM,Reinitializes the parameter estimator with the model in
the NM slot of the model frame; resets the covariance
matrix

PBM,Reinitiahzes the parameter estimator with the model in
the PBM slot of the model frame; resets the covariance
matrix

ALG,Resets the covariance matrix

Outputs: After execution, generates "REINIT_USED"

Procedure Library Instantiations:

(REINITIALIZE

(C (THETA) (NO PRECONDITIONS)(END TIME = 1)
(RESULT VALIDITY 1))

(PBM (THETA P)(NO PRECONDITIONS)(END TIME = I)
(RESULT_VALIDITY 1))

(NM (THETA P) (NO PILECONDITIONS) (END TIME = 1)
(RESULT_VALIDITY1))

(ALG (P) (NO PRECONDITIONS) (END TIME = 1)
(RESULT_VALIDITY 1)))

221

REINSTALL <directives>

Description: This function is used to restore the original
model,(PBM),into the adaptive controller env-
ironment after a model structure experiment

Inputs: Reinstall has one directive,PBM

Outputs: After execution, reinstall generates a "reinstallused"
message.

Procedure Library Instantiations:

(REINSTALL (PBM (P THETA) (NO PRECONDITIONS) (END T
(RESULT_VALIDITY 1)))

=1)

SCALER <directive>

Description: This function adjusts the scaling of the data
used for parameter estimation.

Inputs: Scaler has two directives, LOWER, and RAISE.
LOWER: Decrease the scaling factor on plant output

measurements

RAISE: Increase the scahng factor on plant output
measurements

Outputs: "scaler used" message

Procedure Library Instantiations:

(SCALER
i

(LOWER(SCALE) (NO PRECONDITIONS) (END T = I)

• (RESULT_VALIDITY 1)))

(UPPER (SCALE) (NO PRECONDITIONS)(END T = 1)
(RESULT_VALIDITY 1))))

